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Abstract: In recent years, accessing rainfall data from ground observation networks maintained by
national meteorological services in West Africa has become increasingly challenging. This is primarily
due to high acquisition costs and the often sparse distribution of rainfall gauges across the region,
which limits their use in hydrological studies and related research. At the same time, the rising
availability of precipitation products derived from satellite/earth observations, reanalysis datasets,
and in situ measurements presents exciting prospects for hydrological applications. Nonetheless,
these datasets constitute indirect measurements, necessitating rigorous validation against ground-
based rainfall data. This study comprehensively assesses twenty-three gridded rainfall products,
including sixteen from satellites, six from reanalysis data, and one from in situ measurements, across
the Senegal, Gambia, and Casamance River basins. Performance evaluation is conducted across
distinct climatic zones, both pre- and post-resampling against observed rainfall data gathered from
forty-nine rainfall stations over a six-year period (2003–2008). Evaluation criteria include the Kling–
Gupta Efficiency (KGE) and Percentage of Bias (PBIAS) metrics, assessed at daily, monthly, and
seasonal time steps. The results reveal distinct performance levels among the evaluated rainfall
products. RFE, ARC2, and CPC notably yield the highest KGE scores at the daily time step, while
GPCP, CHIRP, CHIRPS, RFE, MSWEP, ARC2, CPC, TAMSAT, and CMORPHCRT demonstrate
superior performance at the monthly time step. During the rainy season, these products generally
exhibit robustness. However, rainfall estimates derived from reanalysis datasets (ERA5, EWEMBI,
MERRA2, PGF, WFDEICRU, and WFDEIGPCC) perform poorly in the studied basins. Based on the
PBIAS metric, most products tend to underestimate precipitation values, while only PERSIANN and
PERSIANNCCS lead to significant overestimations. Spatially, optimal performance of the products is
observed in the Casamance basin and the Sudanian and Sahelian climatic zones within the Gambia
and Senegal basins. Conversely, in the Guinean zone of the Gambia and Senegal Rivers, the rainfall
products displayed the poorest performance.

Keywords: gridded precipitation products; Casamance River; Gambia River; Senegal River; West Africa

1. Introduction

The United Nations’ World Population Prospects Report [1] highlights a steady popula-
tion growth trend in West Africa. Projections indicate a population increase from 391 million
in 2019 to 796 million by 2050, reaching approximately 1.5 billion by the end of the century.
This demographic increase is expected to lead to a significant rise in water demand across
various sectors, including domestic supply, industry, and intensified agriculture [2,3].
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Against the backdrop of growing water demands, the drought experienced during the
1970s in West Africa drastically reduced water availability, with far-reaching impacts on
socio-economic sectors [4–18]. In situations where water resources are limited and diverse
users contend for access, competitive and conflicting scenarios may arise [19].

Given the prevailing challenges related to water resources, demographic growth, and
potential climate change impacts, it becomes imperative to enhance our understanding
of current and future water availability. This understanding is vital for effective water
resource management and the implementation of adaptation strategies [20–22]. Knowledge
of water resources is the cornerstone of optimal resource management [23] and depends on
the availability of high-quality hydroclimatological data, derived from a dense network
of ground stations over extended periods. Unfortunately, hydrometric services in several
countries in West Africa face difficulties in gauging rivers and providing flow time series,
due to human, material, and financial resource constraints [24,25]. Time series of observed
data often suffer from incompleteness, discontinuity, and short durations, rendering them
unsuitable for hydrological applications [26]. In parallel, access to in situ meteorological
data, particularly at daily time steps, remains a major constraint due to the prohibitive costs
of acquisition [27–29].

Meanwhile, the recent rise of precipitation products derived from satellites, reanalysis,
and in situ data offers significant opportunities for hydrological applications, climate
change studies, and sustainable water resource management [30–33]. Gridded precipitation
data represent a valuable alternative to address issues related to the availability and
accessibility of ground observations [34]. Gridded precipitation has a number of advantages:
(i) near-global coverage, (ii) densification of measurement networks, (iii) fine spatiotemporal
resolution, (iv) long-term availability, (v) accessibility, and so on. However, gridded rainfall
estimates are indirect measurements characterized by spatial and temporal uncertainties
that need to be evaluated and corrected where possible [35].

Several studies have directly compared gridded precipitation products with in situ
data [35–37], while others have assessed their hydrological reliability at different time scales
in West Africa [17,38–45].

For the direct comparison, Dembélé and Zwart [36] compared the reliability of seven
products (ARC 2.0, CHIRPS, PERSIANN, RFE 2.0, TAMSAT, TARCAT, and TRMM) in Burk-
ina Faso. Similarly, Satgé et al. [35] evaluated the performance of twenty-three mesh prod-
ucts (ARC-2, CHIRP v.2, CHIRPS v.2, CMORPH-Raw v.1, CMORPH-CRT v.1, CMORPH-
BLD v.1, CPC v.1, GSMap-RT v.6, GSMap-Adj v.6, GPCC v.7, JRA-55 Adj, MSWEP v.2.2,
PERSIANN-CDR, PERSIANN-RT, PERSIANN-Adj, SM2Rain-CCI b.2, TAMSAT v.3, TMPA-
RT v.7, TMPA-Adj v.7, WFDEI, MERRA-2, JRA-55, and ERA-Interim) compared with in situ
data from West Africa. The work of Didi et al. [37] focused on climate variability based on
six rainfall indices in five countries (Senegal, Niger, Burkina Faso, Ivory Coast, and Benin)
using CHIRPS data.

While for hydrological validation, Gosset et al. [39] assessed the ability of nine products
(PERSIANN, CMORPH, TRMM, TMPA 3B42, GSMap, RFE, CPC, EPSAT, and GPCP-1DD)
to simulate flows at AMMA-CATCH sites in Niger and Benin. Cassé et al. [40] analyzed
the potential of six products (CPC, RFE2, TRMM 3B42 v7, TRMM 3B42RT, CMORPH, and
PERSIANN) to predict flooding on the River Niger at Niamey. Gascon [17] used three
products (TRMM, PERSIANN, and CMORPH) for a hydrological study of the Ouémé
basin in Niger. In their paper, Poméon et al. [42] tested the effectiveness of ten products
(CFSR, CHIRPS, CMORPH v1.0 CRT, CMORPH v1.0 Raw, PERSIANN-CDR, RFE 2.0,
TAMSAT, TMPA 3B42 RT v7, and GPCC FDDv1) in West Africa. Bâ et al. [43] highlighted
the importance of PERSIANN-CDR in hydrological modeling in the Senegal and Niger
Rivers. Recently, Dembélé et al. [44] investigated the performance of seventeen gridded
precipitation data (TAMSAT, CHIRPS, ARC, RFE, MSWEP, GSMap, PERSIANN-CDR,
CMORPH-CRT, TRMM 3B42, TRMM 3B42RT, JRA-55, EWEMBI, WFDEI-GPCC, WFDEI-
CRU, MERRA-2, PGF, and ERA5) in a simulation in the Volta basin of Burkina Faso. In
a recent study, Kouakou et al. [45] used fifteen gridded precipitation products (ARC v.2,



Hydrology 2024, 11, 75 3 of 23

CHIRP v.2, CHIRPS v.2, PERSIANN-CDR, MSWEP v2.2, TAMSAT v3, ERA5, JRA-55 Adj,
MERRA-2 PRECTOT, MERRA-2 PRECTOTCORR, WFDEI-CRU, WFDEI-GPCC, CPC v.1,
CRU TS v.4.00, and GPCC) to determine their reliability in simulating flows in different
basins in West and Central Africa.

Compared with studies carried out exclusively on Senegal’s main hydrosystems, Stisen
and Sandholt [38] used five products (CMORPH, CCD, CPC-FEW v2, TRMM 3B46 v6, and
PERSIANN) to simulate flows in Bafing Makana, Gourbassi, and Oualia, while Bodian
et al. [41] simulated flows in Bafing Makana with TRMM.

However, most of these studies focus primarily on hydrological validation after spatial
interpolation rather than direct/pixel-by-pixel evaluation against in situ rainfall data, and
little is known of their performance across climatic zones. Additionally, some studies
evaluated only a limited number of products, and the value of emerging datasets such as
IMERG must be evaluated and compared across multiple regions and climates. Considering
the importance of the Senegal, Gambia, and Casamance River basins in West Africa and
the sparse research on the performance of gridded precipitation products in the region, this
paper aims to evaluate the performance of twenty-three gridded rainfall products at daily,
monthly, and seasonal time steps across these three river basins. Using a large number
of products, this study also builds upon an exceptional database of ground-based rainfall
observations from four countries and explores the performance of gridded datasets before
and after spatial resampling across different time scales.

2. Materials and Methods
2.1. Study Area

This study focuses on the main hydrological systems of Senegal: the Casamance,
Gambia, and Senegal River basins (refer to Figure 1). The Senegal River spans latitudes
10◦30′ to 17◦30′ north and longitudes 7◦30′ to 16◦30′ west, with a length of approximately
1,800 km [46]. Originating from the Bafing, Bakoye, and Falémé tributaries, sourced in
the Fouta Djalon massif in Guinea, the basin covers an expansive area of 395.000 square
kilometers [47]. This basin extends across the high plateau region of northern Guinea,
the western part of Mali, the southern regions of Mauritania, and the northern part of
Senegal [48]. The Gambia basin occupies the latitudinal range between 11◦22′ and 14◦40′

north and longitudinally between 11◦13′ and 16◦42′ west [49]. The Gambia River stretches
across 1180 km [50] and drains an extensive area of 77.054 square kilometers, shared
among Guinea, Senegal, and The Gambia [51]. The Casamance basin lies between 12◦20′

and 13◦21′ north latitude and 14◦17′ and 16◦47′ west longitude in the southern region of
Senegal. Spanning approximately 300 km in length, the basin covers an area of 20.150 square
kilometers [52]. While predominantly situated within Senegalese territory, it marginally
extends into parts of the Republic of The Gambia to the north and Guinea-Bissau to the
south [52–54].

The altitude varies significantly across these basins, ranging from 0 to 83 m for the
Casamance basin, 0 to 1530 m for the Gambia basin, and for the Senegal basin (Figure 1a).
Climatically, total rainfall plays a pivotal role in classification [40,46]. Over the period
1940–2004, the average annual rainfall (Figure 1b), according to Vintrou’s [55] classification,
indicates that the Casamance basin is situated within the Sudanian and Guinean climatic
zones (extreme south), whereas the Gambia and Senegal basins encompass the Sahelian
(extreme north), Sudanian, and Guinean (extreme south) climatic zones. Based on these
climatic zones, the unimodal rainfall pattern is characterized by a wet season lasting three
to six months and a dry season spanning nine to six months [16,47,50].
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Figure 1. Location of the Casamance, Gambia, and Senegal River basins: (a) spatial distribution of
altitudes and rainfall stations; (b) spatial distribution of selected rainfall stations and mean annual
rainfall over the period 1940–2004.

2.2. Data

Two sources of data are used in this study: observed rainfall data and gridded rainfall
products.

2.2.1. Observed Rainfall Data

The daily rainfall data utilized in this study originate from the national meteorological
services of Senegal, Mali, Guinea, and The Gambia and are archived within the databases
of the Senegal River Basin Organization (OMVS) and the Gambia River Basin Organization
(OMVG). These datasets encompass observations from thirty-four stations within the
Casamance basin, twenty-nine stations within the Gambia basin, and seventy-four stations
within the Senegal basin. Figure 2 depicts the observed rainfall data collected across these
three catchments. The temporal coverage of the datasets varies, spanning from 1950 to
2012 for the Casamance basin, 1950 to 2014 for the Gambia basin, and 1950 to 2019 for the
Senegal basin.

Upon analysis of Figure 2, it becomes evident that the quality and continuity of
these datasets differ among the basins. Among the one hundred and thirty-seven stations
analyzed, only ten exhibit less than a 5% data gap, while most stations lack recent data.
To ensure consistency and reliability in the analysis, a reference period spanning from
2003 to 2008 was selected for the statistical evaluation of the rainfall products (Figure 2).
This timeframe offers the advantage of possessing complete and concurrent data across
all forty-nine selected rainfall stations, comprising five stations for the Casamance basin,
eighteen for the Gambia basin, and twenty-six for the Senegal basin (refer to Figure 1b).
Furthermore, this period aligns with the recording timeframe of the majority of available
gridded rainfall products (see Table 1).
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Table 1. Characteristics of the twenty-three gridded precipitation products selected.

Datasets Full Product Name Data Sources Types Start of
Operation

Spatial
Resolution

Temporal
Resolution References

ARC v2.0 Africa Rainfall Estimate Climatology v2.0 IS, S Satellite 1983-P 0.1◦ × 0.1◦ Daily [56]

CHIRP v2.0 Climate Hazards Group InfraRed v2.0 S, R, A Satellite 1981-P 0.05◦ Daily [57]

CHIRPS v2.0 Climate Hazard Group InfraRed Precipitation with
Stations v2.0 IS, S, R, A Satellite 1981-P 0.05◦ Daily [57]

MSWEP v2.2 Multi-Source Weighted-Ensemble Precipitation V2.2 IS, S, R, A Satellite 1979-P 0.1◦ × 0.1◦ 3-hourly [58–60]

TAMSAT v3.0 Tropical Applications of Meteorology using SATellite and
ground-based observations v.3 IS, S Satellite 1983-P 0.0375◦ × 0.0375◦ Daily [61,62]

GPCP-1DD v1.2 Global Precipitation Climatology Project 1-Degree Daily
Combination v1.2 IS, S Satellite 1997-P 1◦ × 1◦ Daily [63]

PERSIANN Precipitation Estimation from Remotely Sensed
Information using Artificial Neural Networks S Satellite 2000-P 0.25◦ × 0.25◦ 6h [64,65]

PERSIANN-CDR v1r1
Precipitation Estimation from Remotely Sensed
Information using Artificial Neural Networks Climate
Data Record

IS, S Satellite 1983-P 0.25◦ × 0.25◦ Daily [30]

PERSIANN-CCS PERSIANN-Cloud Classification System S Satellite 2003-P 0.4◦ × 0.4◦ Daily [66]

PERSIANN-PDIR-NOW PERSIANN-Dynamic Infrared Rain Rate near real-time Satellite 2000-P 0.4◦ × 0.4◦ Daily [67]

PERSIANN-CCS-CDR PERSIANN-Cloud Classification System- Climate Data
Record IS, S Satellite 1983-P 0.4◦ × 0.4◦ Daily [68]

CMORPH-CRT v1.0 Climate Prediction Center MORPHing technique bias
corrected v1.0 IS, S Satellite 1998-2019 0.25◦ × 0.25◦ Daily [69,70]

RFE v2.0 Climate Prediction Center African Rainfall Estimate IS, S Satellite 2001-P 0.1◦ × 0.1◦ Daily [71,72]

IMERGDE v06 Integrated Multi-satellitE Retrievals for GPM (IMERG)
Early IS, S Satellite 2000-P 0.1◦ × 0.1◦ Daily [73]

IMERGDL v06 Integrated Multi-satellitE Retrievals for GPM (IMERG)
Late IS, S Satellite 2000-P 0.1◦ × 0.1◦ Daily [73]
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Table 1. Cont.

Datasets Full Product Name Data Sources Types Start of
Operation

Spatial
Resolution

Temporal
Resolution References

IMERGDF v06 Integrated Multi-satellitE Retrievals for GPM (IMERG)
Final IS, S Satellite 2000-P 0.1◦ × 0.1◦ Daily [73]

MERRA-2 Modern-Era Retrospective Analysis for Research and
Applications 2 IS, S, R Reanalysis 1980-P 0.5◦ × 0.5◦ Hourly [74,75]

ERA5 European Centre for Medium-range Weather Forecasts
ReAnalysis 5 (ERA5) R Reanalysis 1979-P 0.25◦ × 0.25◦ Hourly [76]

EWEMBI v1.1 EartH2Observe, WFDEI, and ERA-Interim data Merged
and Bias-corrected for ISIMIP (EWEMBI) IS, R Reanalysis 1979-2016 0.5◦ × 0.5◦ Daily [77]

PGF v3 Princeton University Global Meteorological Forcing IS, R Reanalysis 1979-2016 0.25◦ × 0.25◦ Daily [78]

WFDEI-CRU WATCH Forcing Data ERAInterim (WFDEI) corrected
using Climatic Research Unit (CRU) IS, R Reanalysis 1979-2018 0.5◦ × 0.5◦ 3-hourly/day [79]

WFDEI-GPCC WATCH Forcing Data ERAInterim (WFDEI) corrected
using Global Precipitation Climatology Centre IS, R Reanalysis 1979-2016 0.5◦ × 0.5◦ 3-hourly/day [80]

CPC v.1 Climate Prediction Center Unified v.1 IS In situ 1979-P 0.5◦ × 0.5◦ Daily [81,82]

Read in the “Data Sources” column: IS, In situ; S, Satellite; R, Reanalysis; A, Analysis; and in the “Start of Operation” column, P, Present.
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2.2.2. Gridded Precipitation Data

Multiple research entities and institutions have developed various gridded precip-
itation data products [82–84]. To streamline the selection process, three criteria were
established: (i) thorough identification of available products through a literature review,
(ii) ease of accessibility, and (iii) alignment of the product’s registration period with the
designated evaluation period (2003–2008) based on observed rainfall data inventory (re-
fer to Figure 2). Ultimately, twenty-three products were chosen, encompassing sixteen
satellite-based products (ARC v2.0, CHIRP, CHIRPS, CMORPH-CRT v1.0, GPCP-1DD v1.2,
IMERGDE v06, IMERGDF v06, IMERGDL v06, MSWEP v2.2, PERSIANN, PERSIANN-
CCS, PERSIANN-CDR v1r1, PERSIANN-CCS-CDR, PERSIANN-PDIR-NOW, RFE v2.0,
and TAMSAT v3.0), six reanalysis products (ERA5, EWEMBI, PGF v3, MERRA2, WFDEI-
CRU, and WFDEI-GPCC), and one in situ product (CPC v1.0/RT).

By evaluating a diverse range of products, this study aims to provide comprehensive
insights into their performance across Senegal’s main hydrological systems. The coordi-
nates of the forty-nine selected stations (refer to Figure 1b) serve as reference points for
extracting gridded rainfall data. Table 1 provides a summary of the characteristics of each
product, along with corresponding references for further details on their development and
methodologies.

2.3. Methods

Considering the variations in spatial and temporal resolutions among the products (as
outlined in Table 1), the initial step involved temporal and spatial resampling. Subsequently,
a comprehensive point-by-pixel assessment was conducted utilizing two statistical criteria:
Kling–Gupta Efficiency (KGE) and Percentage Bias (PBIAS).

2.3.1. Temporal Resampling of Products

The gridded precipitation products under assessment exhibit diverse temporal resolu-
tions (refer to Table 1). To facilitate a comprehensive evaluation, this study assesses these
products at daily, monthly, and seasonal intervals. Consequently, temporal aggregation is
performed to align the products with these specific time steps, including daily, monthly,
and seasonal aggregations.

For seasonal assessments, only the rainy season is considered, with its duration varying
across climatic zones. Drawing from previous studies focused on characterizing the rainy
season in West Africa [28,50,85], specific periods have been selected for this study. These
periods are delineated as follows: three months for the Sahelian zone (July to September),
five months for the Sudanian zone (June to October), and six months for the Guinean zone
(May to October).

2.3.2. Spatial Resampling of Products

Spatial resampling serves to establish a uniform resolution for all selected gridded
precipitation data, allowing for a comparative assessment against the initial datasets. Given the
differing spatial resolutions among the data products (as detailed in Table 1), it is imperative to
initially evaluate them at their native resolutions. This ensures a precise comparison between
observed rainfall data and the corresponding pixel values at the same station.

Subsequently, an appropriate grid is defined for all products to standardize the spatial
resolution. To assess the impact of this new grid on data performance, grids for each spatial
resolution are extracted and overlaid onto the selected stations. Appendix A illustrates this
overlay, depicting the alignment between rainfall stations and different grids. The objective
is to identify the resolution that accommodates the fewest stations within the same grid.

Analysis of Appendix A reveals that only the 0.25◦ × 0.25◦, 0.1◦ × 0.1◦, and 0.05◦ × 0.05◦

grids contain fewer than three stations per grid. Among these options, the 0.1◦ × 0.1◦

resolution is the most common among the products (refer to Table 1). Consequently, this
resolution is chosen for resampling the products, ensuring consistency in spatial representation
across all datasets.
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In the literature, various interpolation methods are available for spatially distributing
precipitation data [86,87]. These methods prove invaluable when rainfall estimates from
multi-sensor source data, initially on one spatial grid, require transformation to another
grid with a different spatial resolution [86]. Among the commonly employed interpo-
lation techniques are bilinear [88,89], first-order conservative [90,91], distance-weighted
average [88,92,93], and nearest neighbor [94,95] interpolations. These methods, integrated
into the SCRIP toolbox (Spherical Coordinate Remapping and Interpolation Package) [88],
are applied in this study. Specifically, the algorithms utilized are Remapbil for bilinear
interpolation, Remapcon for first-order conservative interpolation, Remapdis for distance-
weighted average interpolation, and Remapnn for nearest neighbor interpolation. These
algorithms can be executed using the Climate Data Operators (CDO) software v2.2.1,
accessible from the Linux terminal.

In this work, the aforementioned interpolation methods are employed to resample the
products to a spatial resolution of 0.1◦ × 0.1◦. Consequently, products such as ARC2, RFE,
MSWEP, IMERGDE, IMERGDF, and IMERGDL, already possessing this spatial resolution,
are not subject to resampling.

2.3.3. Evaluation of Gridded Precipitation Products

In this study, the Kling–Gupta Efficiency (KGE) [96] and Percentage Bias (PBIAS) are
utilized as metrics to assess the robustness of the products both before and after resampling
(refer to Table 2). The KGE is an enhanced version of the Nash criterion (NSE) [97], which
incorporates evaluations of correlation (r), bias (β), and variability (α) [96]. KGE values
range from −∞ to 1, where a value of 1 indicates a perfect fit to the in situ data [47,98,99].

Table 2. Statistical evaluation criteria, formulae, ranges, and optimum values.

Criteria Formulas Extents Optimum Values

KGE 1 −
√
(r − 1)2 + (β − 1)2 + (α − 1)2 −∞, 1 1 (1)

PBIAS (%)
[

1
n ∑n

i=1(PEst−PObs)
1
n ∑n

i=1(PObs)

]
∗ 100 −∞, +∞ 0 (2)

On the other hand, the PBIAS represents the percentage measure of the average differ-
ence between two variables [47]. PBIAS values can range from −∞ to +∞, where positive
or negative values indicate overestimation or underestimation of the estimated variable,
respectively. Values close to 0 suggest a good performance of the evaluated variable. KGE
values of 0.5 and PBIAS values of 0 are commonly employed as reference thresholds to dif-
ferentiate between the best and worst performances of the evaluated variable [47,100,101].
In this study, these thresholds are defined to facilitate a more comprehensive analysis of
the results obtained. The red line depicted on the graphs signifies this threshold for each
evaluation criterion.

For this study, the functions of these criteria, developed within the hydroGOF package
under R [102], are employed.

The KGE (Kling–Gupta Efficiency) is composed of three variables: r, the correlation
coefficient; β, the biases; and α, the variability between the two evaluated variables. The
PBIAS (Percentage Bias) is defined as the percentage difference between the estimated
precipitation (PEst) and the observed precipitation (PObs).

3. Results

The study presents results based on different time steps, both on a global scale covering
all three basins and at the individual hydrosystem level for a more detailed analysis. These
include (i) daily, (ii) monthly, and (iii) seasonal performances of gridded precipitation products.

Furthermore, minimal discrepancy is observed among the resampling methods. Con-
sequently, only the outcomes of the bilinear method are presented. Figures containing all
the results are presented in Appendix B, Figure A1 for the daily time step, Figure A2 for
the monthly time step, and Figure A3 for the seasonal time step.
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3.1. Product Performance at Daily Time Intervals

In Figure 3, the comprehensive daily performance of the products before and after
spatial resampling is illustrated. Analysis of the KGE values reveals that the gridded
precipitation estimates exhibit suboptimal performance on a daily scale. Prior to spatial
resampling, only RFE, ARC2, CPC, and MSWEP products demonstrated KGE values
exceeding 0.5, while CMORPHCRT exhibited an average KGE of 0.5. Notably, spatial
resampling marginally enhanced performance, with CPC, CMORPHCRT, and TAMSAT
showing improvements of 3%, 4%, and 2%, respectively.
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Moreover, all these products exhibited a tendency to slightly underestimate observed
rainfall both before and after resampling, as indicated by the PBIAS values. However,
products such as IMERGDF, PERSIANNCCS, PERSIANN, IMERGDE, and IMERGDL
displayed low KGEs. Notably, PERSIANNCCS and PERSIANN demonstrated substantial
overestimations of observed rainfall. Additionally, reanalysis data exhibited limited robust-
ness, consistently providing underestimated values compared to ground data. Among the
resampling methods, the nearest neighbor method exhibited the poorest performance.

From a spatial perspective, Figures 4 and 5 depict the spatial distribution of daily KGE
values before and after spatial resampling, respectively. It is evident that RFE and ARC2
exhibit reasonable performance in replicating ground rainfall patterns in the Casamance
and Senegal basins prior to spatial resampling. However, the performance of these products
displays spatial variability within these basins.

In the Casamance basin, RFE and ARC2 demonstrate robustness across all climatic
zones, with KGE values ranging from 0.42 to 0.79. Meanwhile, MSWEP exhibits average
performance in the Casamance basin. In contrast, in the Senegal River basin, RFE and ARC2
only demonstrate robustness in the Sahelian and Sudanian domains, with KGE values
below 0.75.

Furthermore, the performance of CPC notably improves after spatial resampling across
all three hydrosystems. Notably, the performance of gridded rainfall products varies across
different climatic zones within each basin. Optimal results are observed in the Casamance
basin, particularly in the Sudanian zone of the Gambia and the Sahelian and Sudanian
domains of the Senegal River basin.
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3.2. Product Performance at Monthly Intervals

Analysis of the KGE values depicted in Figure 6 reveals that gridded precipitation
exhibits greater robustness at the monthly time step compared to the daily time step. Specif-
ically, GPCP, CHIRPS, RFE, MSWEP, ARC2, CPC, CHIRPS, TAMSAT, and CMORPHCRT
data demonstrate KGE values ≥ 0.84 at their respective initial resolutions, with relatively
low error percentages.
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Spatial resampling resulted in a 4% improvement in KGE values for CHIRPS and a 1%
improvement for CHIRP, while CPC, TAMSAT, and CMORPHCRT experienced a 2% dete-
rioration in KGE values. Notably, the GPCP product maintained the same performance as
before spatial resampling. However, IMERGDF, PERSIANNCCS, PERSIANN, IMERGDE,
and IMERGDL products displayed poor performance at the monthly time step. Analysis
of estimation errors indicates that PERSIANNCCS and PERSIANN tend to overestimate
observed rainfall. Similar results were observed for the reanalysis products.

Figures 7 and 8 display the spatial distribution of monthly KGE values before and after
spatial resampling. These figures illustrate that ARC2, CHIRP, CHIRPS, CMORPHCRT,
CPC, GPCP, MSWEP, RFE, and TAMSAT exhibit good agreement with observed data across
all climatic domains. However, their performance varies depending on climate zones,
basins, and resampling methods.
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In the Casamance basin, CHIRP, RFE, MSWEP, ARC2, CHIRPS, TAMSAT, CPC, CMOR-
PHCRT, and GPCP products demonstrate robust performance both before and after spatial
resampling, with KGE values ranging from 0.33 to 0.94. The most favorable outcomes were
observed in the Guinean zone.

Similarly, in the Gambia basin, these products exhibit robustness both before and
after spatial resampling, with KGE values fluctuating between −0.8 and 0.94. However,
performance varies across different zones, with the Sudanian zone showing the best results.

In the Senegal basin, only CHIRP maintains satisfactory performance both before
and after spatial resampling, with KGE values ranging from 0.47 to 0.91. Post-resampling,
CHIRPS, GPCP, and TAMSAT exhibit favorable performance across the basin, while CMOR-
PHCRT and CPC show improved performance primarily in the Sahelian and Sudanian
climatic zones.

Overall, the most notable performances are observed in the Sahelian and Sudanian
climatic zones across all products.

3.3. Seasonal Product Performance

The results regarding the performance of gridded precipitation estimates during the
rainy season are depicted in Figure 9. Analysis of this figure reveals that, during the rainy
season, the products exhibit performances akin to those obtained at the monthly time step.

Before spatial resampling, RFE, ARC2, MSWEP, CPC, CHIRP, CMORPHCRT, CHIRPS,
and GPCP data provide reasonably satisfactory estimates of ground rainfall. Following spa-
tial resampling, the KGE values of GPCP, CHIRPS, CHIRP, and CMORPHCRT improved by
1%, 6%, 9%, 11%, and 19%, respectively, while that of CPC deteriorated by 4%. Additionally,
estimation errors for these products decreased.

Conversely, PERSIANN, IMERGDF, EWEMBI, IMERGDE, and IMERGDL yielded the
weakest results. PBIAS analysis indicates that PERSIANN and PERSIANNCCS tend to
overestimate in situ rainfall during the wet season. Furthermore, during the wet season, the
conservative-first and distance-weighted-average methods exhibited the best performance.
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Figures 10 and 11 present the spatial distribution of KGE metrics during the rainy
season, both pre- and post-spatial resampling. It is evident that the products exhibiting
favorable performance during this period correspond to those identified at the monthly
temporal scale, namely, ARC2, CHIRP, CHIRPS, CMORPHCRT, CPC, GPCP, MSWEP,
and RFE. However, it is noteworthy that the performance of these products varies across
different hydrological basins.

In the Casamance basin, ARC2, CHIRP, CHIRPS, CMORPHCRT, CPC, GPCP, MSWEP,
and RFE consistently demonstrated robust performance across all climatic zones, with
the Guinean zone displaying particularly notable performance. Conversely, within the
Gambia basin, these products exhibited divergent performance patterns. Only ARC2 and
RFE displayed superior performance across all climatic zones, while CHIRP, CHIRPS,
CMORPHCRT, CPC, GPCP, and MSWEP showcased enhanced performance specifically
within the Sudanian zone.
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Within the Senegal basin, ARC2, CMORPHCRT, CPC, and RFE exhibited superior per-
formance in the Sahelian zone. Additionally, MSWEP showcased satisfactory performance
throughout the basin, with optimal performance observed within the Guinean zone.

4. Discussion

The analysis of the point-to-pixel comparison between the observed rainfall and
gridded rainfall data reveals notable variability in the performance of gridded rainfall
datasets contingent upon the temporal resolution and climatic domain. Notably, there is a
discernible decrease in performance observed at the daily time step across the board. Beck
et al. [60] and Satgé et al. [35] have suggested that such performance discrepancies stem, in
part, from discrepancies between the time steps utilized for rain gauge adjustments and
the temporal misalignment between rain gauge and satellite reporting times.

ARC2, CPC, and RFE exhibit outstanding performance in rainfall estimation across the
Casamance, Gambia, and Senegal basins. Notably, ARC2 and RFE benefit from adjustments
based on observed rainfall data, while CPC relies solely on in situ measurements. This
differential treatment could elucidate their superior performance. However, the reliability
of in situ data also plays a crucial role in shaping the accuracy of corrected gridded rainfall
estimates [35]. The absence of reliable in situ measurements hampers local adjustments
to satellite-derived estimates, potentially explaining the inefficacy of certain products
corrected to the daily time step within the hydrological systems under scrutiny.

The findings resonate with those of Dembélé and Zwart [36] in Burkina Faso, who
reported similar outcomes for ARC2 and RFE.

At the monthly temporal scale, a suite of gridded rainfall products including GPCP,
CHIRP, CHIRPS, RFE, MSWEP, ARC2, TAMSAT, and CMORPHCRT demonstrate favor-
able agreement with observed data. Notably, the performance of CHIRPS and MSWEP
resonates with findings from Satgé et al. [35] in West Africa, and similarly, Didi et al. [37]
underscore the robustness of CHIRPS across five West African nations. This superior
performance at monthly scales, compared to daily resolutions, can be attributed to the
aggregation effect wherein errors at sub-monthly intervals, partly attributed to temporal
misalignment between rain gauge and satellite reporting times, tend to offset one another
upon aggregation [36].

At the seasonal scale, particularly during the rainy season, gridded rainfall datasets
(RFE, ARC2, MSWEP, CPC, CHIRP, CMORPHCRT, CHIRPS, and GPCP) adequately esti-
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mate ground-level precipitation within the studied basins. Nonetheless, it is noted that
gridded rainfall estimates are susceptible to seasonal variations, with the consistency of
rainfall volumes during winter potentially mitigating errors, while the statistical weight of
errors during dry seasons may exacerbate performance discrepancies [35].

From a climatic standpoint, the spatial distribution of Kling–Gupta Efficiency (KGE)
values elucidates varying product performances across climatic zones within each basin.
Notably, better performances are observed in the Casamance basin overall, the Sudanian
zone of the Gambia basin, and the Sahelian and Sudanian climatic zones of the Senegal basin.
This disparity in performance can be rationalized by the proximity of these climatic zones
to the Atlantic Ocean, facilitating the circulation of colder air masses compared to inland
areas. Conversely, the Guinean region in the Gambia and Senegal River basins exhibits
poorer performance, attributed to its mountainous terrain and high cloud cover [30,103],
which may lead to an overestimation of rainfall due to clouds “not precipitating”.

Furthermore, the precipitation bias (PBIAS) analysis indicates that PERSIANN and
PERSIANNCCS tend to overestimate observed rainfall, while reanalysis such as ERA5,
EWEMBI, MERRA2, PGF, WFDEICRU, and WFDEIGPCC consistently underestimate val-
ues. This underestimation or overestimation is often associated with variations in complex
topography, with altitude playing a significant role in influencing error magnitude [92].

Regarding spatial resampling, its impact on improving gridded precipitation product
results is generally limited, with some data even experiencing performance degradation
post-resampling. However, the efficacy of resampling methods varies across products
and spatial-temporal scales, with bilinear (Remapbil) exhibiting the most promising re-
sults, followed by first-order conservative (Remapcon) and distance-weighted (Remapdis)
methods.

The rain gauge stations used in this study are generally located near the main rivers.
Thus, there are no stations with data for the period studied in certain parts of the catchment
areas used in this work. This situation makes it impossible to obtain an idea of the perfor-
mance of the data evaluated in these areas. The poor representativeness of the stations used
to evaluate gridded rainfall data mainly concerns the Gambia and Senegal River basins.
For example, no stations were used in the north-eastern part of the Senegal basin. This
limits the robustness of gridded rainfall data in this area.

5. Conclusions

This study endeavors to assess the efficacy of twenty-three gridded rainfall prod-
ucts across West Africa, particularly within the Casamance, Gambia, and Senegal River
basins. The methodology encompasses an evaluation of data performance pre- and post-
resampling, juxtaposed with observed rainfall data from forty-nine stations over a span
of six years (2003–2008) at daily, monthly, and seasonal intervals, utilizing Kling–Gupta
Efficiency (KGE) and Percentage Bias (PBIAS) metrics for assessment.

The findings indicate that RFE, ARC2, and CPC demonstrate superior precipitation
estimation at the daily time step, while GPCP, CHIRP, CHIRPS, RFE, MSWEP, ARC2,
TAMSAT, and CMORPHCRT exhibit greater robustness at monthly intervals. Moreover,
RFE, ARC2, MSWEP, CPC, CHIRP, CMORPHCRT, CHIRPS, and GPCP display optimal
performance during the rainy season. Spatial analysis of KGE values underscores varying
product performance across climatic zones, with the most favorable outcomes observed
throughout the Casamance basin and the Sudanian and Sahelian climatic zones of the
Gambia and Senegal basins, while subpar performances are typically noted in the Guinean
area of the Gambia and Senegal Rivers.

PBIAS results reveal tendencies for PERSIANN and PERSIANNCCS to overestimate
precipitation, whereas ERA5, EWEMBI, MERRA2, PGF, WFDEICRU, and WFDEIGPCC
consistently underestimate values across spatial and temporal scales. Additionally, re-
sampling efforts exhibit limited efficacy in enhancing product performance, although the
Remapbil, Remapcon, and Remapdis methods are recommended for resampling gridded
precipitation products within Senegal’s primary hydrological systems.
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In conclusion, the most efficient products, contingent upon temporal and spatial scales,
serve as viable alternatives for diverse hydrological studies in the absence of observed
rainfall data within Senegal’s main hydrosystems. This study elucidates the strengths
and limitations of each product across all examined scales, thereby facilitating informed
decision-making for future users. Moreover, the findings provide valuable insights for
data-producing organizations and institutions to enhance the accuracy of rainfall esti-
mation algorithms within the study area. However, future endeavors may benefit from
hydrological assessments to gauge the products’ efficacy in simulating flows.
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