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ABSTRACT: Rainfall in the Sahel is extremely variable on daily to multidecadal time scales, challenging climate models
to realistically simulate its past and future evolution and questioning their relevance for defining suitable climate change
adaptation strategies. Improving confidence in climate models may be achieved by (i) evaluating their capacity for repro-
ducing observed climatic evolution and (ii) attributing these evolutions. Moreover, there is a need to consider relevant cli-
matic indicators, from an end-user point of view. Fully coupled (CMIP6-AOGCM) models with idealized detection and
attribution forcings (DAMIP) as well as atmosphere-only simulations (AMIP) are used to investigate the respective roles
of external forcing factors and internal climate variability in the observed intensification of the Sahelian rainfall regime.
We show that CMIP6 models contain signs of the intensification of the rainfall regime as detected over the past 35 years
from a regional daily observations network. Both the increase in intensity and occurrence of wet days, as well as that of ex-
treme daily rainfall, are remarkably well reproduced by historical simulations incorporating anthropogenic forcing factors,
with anthropogenic aerosols contributing the largest share of this trend. Though more strongly affected by model structure
uncertainty, the greenhouse gas forcing also displays noticeably robust features. Models are shown to fail at simulating the
observed dry extreme evolution. These findings give incentive for further investigating the underlying physical mechanisms
that drive the Sahelian rainfall regime evolution at regional to subregional scales. Furthermore, future hydroclimatic trajec-
tories in the Sahel should be explored, though particular caution is required as to which rainfall indicator to consider.

SIGNIFICANCE STATEMENT: The rainfall regime at a particular location is crucial to human and ecosystem liveli-
hoods. Changes in rainfall regime characteristics on multidecadal time scales result from both the effects of external
forcing factors on the climate and of its internal variability, with this latter aspect becoming more prominent on small
spatial scales. In this study, several state-of-the-art climate simulations are used to document the rainfall regime evolu-
tion of the past 65 years in the Sahel, in terms of amplitude, timing, and causes. It is shown that large-scale anthropo-
genic factors have a substantial imprint, modulated to some extent by internal variability. These findings demonstrate
that coarse-resolution climate models are a well-suited tool to investigate the recent intensification of rainfall in the
Sahel, and may provide valuable information for climate change adaptation planning.
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1. Introduction

a. Detecting and attributing rainfall regime intensification
at a regional scale

As highlighted by the various IPCC-AR6 reports (Masson-
Delmotte et al. 2021; Pörtner et al. 2022), the regional dimen-
sion of climate change is becoming a central concern for both
the scientific community and stakeholders worldwide, for a
number of concurring reasons. For scientists, hierarchizing
and understanding the interplays between the various pro-
cesses that control the impact of global warming on regional
climates remain a puzzling challenge; this has essential conse-
quences for the capacity of climate models to properly repro-
duce the ongoing evolution of local to regional1 climate

features, especially when it comes to the water cycle in gen-
eral and precipitation in particular. For stakeholders, the cen-
tral issue is that climate change itself as well as its impacts on
every aspect of life are felt locally; they thus need an assess-
ment of the confidence they can put in rainfall scenarios at
the appropriate scales. At the intersection of the challenges
faced by these two communities of actors lies the detection–
attribution issue. A first step for gaining confidence in climate
models is to evaluate whether they capture the multiscale rain-
fall evolution in regions where such evolution has been detected
in observations. A second step is to identify and rank the
changes of forcing factors accounting for the detected evolution;
such attribution studies are necessary for anticipating the im-
pact of future forcing factor changes (Hegerl et al. 2019). Link-
ing ongoing detected trends to expected future changes through
attribution studies is, in turn, essential for the elaboration of rel-
evant adaptation policies in territories where populations have
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already to adapt to new climate conditions while questioning
what is coming next.

Detecting rainfall regime evolution in climate models at re-
gional scale and attributing them to a modification of the exter-
nal forcing combination is challenging in two main respects: one
is linked to the intermittent nature of rainfall while the other is
linked to the way rainfall-producing processes are represented
in models.

The highly variable and multiscale nature of rainfall im-
plies that climate modifications may have different conse-
quences at different scales. For instance, at the global scale, the
expected change in mean annual precipitation due to CO2-
driven warming is estimated to ’2.5% K21 (Fläschner et al.
2016; Allan et al. 2020; Pendergrass 2020). On the other hand, it
may reach much larger values at local/convective scale where
local phase equilibrium dominates, typically following the
Clausius–Clapeyron law at a rate of ’6.5% K21 (Trenberth
1999; Allen and Ingram 2002; Held and Soden 2006; Pall et al.
2007), or even bigger given the ability of large convective systems
for pumping atmospheric moisture far away from the core of the
system (Trenberth et al. 2003). In-between these two scale ex-
trema, a range of different behaviors may exist, most notably
when global warming modifies the regional climate dynamics,
possibly involving a decrease of the mean annual precipitation. It
is thus expected that, in some regions, the mean annual precipita-
tion may increase only slightly, or even decrease, while the
extreme rainfall values increase, especially in tropical regions
where rainfall occurrences and intensities are jointly driven by
monsoon dynamics at regional scale and convection at local
scale.

The representation of rainfall-producing processes in cli-
mate models is another source of difficulty when it comes to
detecting meaningful changes in their rainfall outputs in con-
junction with changing forcing factors. On the one hand,
global-scale energetic constraints}driving the response of
global-mean annual precipitation to any modification of the at-
mospheric composition (mainly GHG and aerosols)}are well
resolved by models (Allen and Ingram 2002; Stephens and
Ellis 2008; Pendergrass and Hartmann 2014). On the other hand,
the subscale processes are ill-represented in most climate models
for both resolution and parameterization reasons. This is espe-
cially problematic in tropical regions where the interactions be-
tween thermodynamical processes (e.g., phase equilibrium laws,
convection) and dynamical processes (e.g., regional monsoon
dynamics) play a key role in shaping rainfall regimes. Capturing
regional rainfall regime evolution with climate models may thus
largely depend on their capacity to correctly simulate thermody-
namical aspects as well as atmospheric and oceanic circulation
patterns, and their coupling.

The Sahel is typically one of these tropical regions where
thermodynamical and dynamical factors combine in a puz-
zling way, and where any rainfall regime modification affects
directly and importantly the living conditions of the popula-
tion. It is thus a well-positioned region for testing the ability
of an array of climate models to detect a well-established on-
going rainfall regime change and for looking at their attribu-
tion capacity.

b. Region of study

Over the twentieth century, the Sahelian annual rainfall vari-
ability has displayed a strong decadal mode (e.g., Nicholson
et al. 2018). From the 1950s onward, this decadal variability was
strongly amplified, with a shift from anomalously wet decades
(1950–60s) to the 1970–80s dry decades, resulting in a regional
long-lasting drought (Hulme 2001; Dai et al. 2004). An increase
in annual rainfall was then observed, starting at the end of the
1980s (Nicholson 2005; Lebel and Ali 2009; Sanogo et al. 2015).
Such an evolution results from the complex interplay between
internal climate variability (ICV) and external forcing factors.
On the one hand, the wet–dry swing of the 1950–90 period has
been suggested to originate mainly in the switching from a posi-
tive to a negative phase of the Atlantic multidecadal oscillation
(AMO; Zhang and Delworth 2006; Mohino et al. 2011), an in-
ternally generated pattern of sea surface temperature (SST,
Ting et al. 2009; Friedman et al. 2020) whose link with Sahel
rainfall is robustly captured by climate models (Ting et al. 2011;
Lyu and Yu 2017). At the same time, anthropogenic aerosols
emissions have been shown to produce a longer-term overall
drying of the Sahel (Rotstayn and Lohmann 2002; Biasutti and
Giannini 2006; Ackerley et al. 2011) through their control on
Atlantic SSTs (Hoerling et al. 2006; Booth et al. 2012). On the
other hand, the partial recovery of the last decades seems to be
a combination of an increase in greenhouse gases (GHG) con-
centrations (Dong and Sutton 2015; Park et al. 2016) and the
decline of anthropogenic aerosols concentrations (Giannini and
Kaplan 2019; Marvel et al. 2020), with the reversal of the AMO
from a negative to a positive phase also involved (Mohino et al.
2011). Marvel et al. (2020) underline, though, that unraveling
the respective roles of aerosols forcing and oceanic variability is
complicated since the two signals project onto each other.

While most, if not all, of the abovementioned studies focus
on seasonal or annual totals, several recent studies point to a
concomitant increase in heavy rainfalls in the region. Panthou
et al. (2014) showed that, over the central Sahel, the propor-
tion of rainy days considered as heavy and extreme (occurring
less than 10 times and less than 2.5 times a year, respectively)
in the total population of rainy days has increased substantially
from the core of the drought to the recent period. In line with
this, Taylor et al. (2017) conclude there is a threefold increase
in the frequency of heavy storms affecting the whole Sahel.
Furthermore, Chagnaud et al. (2022) reported that the stron-
gest daily rainfalls experiment the largest increase in fre-
quency. It is worth mentioning that the increase in rainfall
extremes has likely been affecting the hydrology of the re-
gion over the second half of the twentieth century (Wilcox
et al. 2018; Tramblay et al. 2020; Elagib et al. 2021), though
other factors such as deforestation and land cover change might
be involved (Descroix et al. 2018). Higher river outflows lead to
more severe floods, causing an increase in damages and casual-
ties (Di Baldassarre et al. 2010). At the other end of the hydro-
climatic spectrum, extreme dry spells seem to show signs of an
increase in frequency/duration, strongly affecting crop yields
and freshwater availability (Porkka et al. 2021).

In fact, annual totals, on the one hand, and dry/wet ex-
tremes, on the other hand, have followed different trajectories
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over the past 65 years. While the 1950–80 drying trend origi-
nates primarily from a reduction in rainfall occurrences of
about 25% (Le Barbé et al. 2002; Lebel and Ali 2009), the an-
nual total improvement seems to result from a combination of
increasing daily rainfall occurrences and intensities (Giannini
et al. 2013; Panthou et al. 2018). However, while intensities
have returned to their predrought level, occurrences remain
well below their wet period level (Panthou et al. 2018). As a
result, a larger contribution from heavy rainfall events to an-
nual totals was reported by Panthou et al. (2014).

Precisely attributing the reasons of such contrasted evolu-
tion remains challenging since it is unclear how the Sahelian
rainfall regime as a whole responds to various forcings. This
raises the two fundamental questions addressed in this study:
(i) Do climate models reproduce the observed rainfall regime
evolution? and (ii) Can they provide some hints at attributing
these signals?

Tackling the two aforementioned issues requires (i) reliable
observational data at the daily resolution, here provided by
an in situ rain gauge network, and (ii) climate model outputs
from various types of simulation: coupled atmosphere–ocean
global climate model (AOGCM) simulations with realistic
and idealized forcings and atmosphere-only (AMIP) simula-
tions. These latter simulations are especially relevant for ana-
lyzing rainfall regimes simulated by climate models in tropical
regions, where SST patterns are of paramount importance.
The data are described in section 2 together with the method-
ology. In section 3 an overview of the recent rainfall regime
evolution, as captured by climate models and observations, is
provided. Section 4 explores the large-scale drivers of the evo-
lution, for the first time giving insights on how the rainfall re-
gime in the Sahel responds to various forcing factors. Key
results are discussed in section 5 and summarized in section 6.

2. Data and methods

a. Observational data

The Base de Données Pluviomètres (BADOPLU) data-
base (e.g., Le Barbé et al. 2002; Lebel and Ali 2009; Panthou

et al. 2018; Chagnaud et al. 2022) is used as a reference. This
database gathers daily rain gauge data from national meteoro-
logical services of West African countries. Only stations with at
least 75% of years flagged as valid over the 1950–2014 (65 years)
period were selected (the quality-control procedure applied to
remove outliers and other invalid data is thoroughly described
in the supplementary material of Panthou et al. 2018). This sam-
pling procedure leads to consider a set of 164 stations, for a total
of 9567 station-years (over a maximum of 164 3 65 5 10660
station-years, Fig. 1a). The majority of missing station-years be-
long to the most recent period (Fig. 1b), linked to both the dete-
rioration of the rain gauge networks and the growing difficulties
in accessing rainfall data.

b. Model data

Models from phase 6 of the Climate Model Intercompari-
son Project (CMIP6; Eyring et al. 2016) are used in this study.
More specifically, we need models having daily rainfall data
available for at least one atmosphere-only (AMIP) simula-
tion, a preindustrial control (PICTL) simulation and several
realizations of the historical simulations with detection and at-
tribution forcings (DAMIP; Gillett et al. 2016): natural-only
(NAT, with solar irradiance and volcanic aerosols loading),
aerosols-only (AER, with anthropogenic aerosols loading),
greenhouse gases-only (GHG), and all forcings (ALL, natural
plus anthropogenic). These rather stringent criteria led to se-
lection of a subset of eight models (shown in bold text in Ta-
ble 1) that does not allow us to sample the full range of
CMIP6 models uncertainty; however, we find a similar behav-
ior with another set of different CMIP6 models regarding
rainfall metrics considered in this study (in ALL runs, Fig. S1
in the online supplemental material). The largest common
number of members for DAMIP simulations is 2. We there-
fore use two members for each of the eight models to avoid
overweighting the models with more members (see Table 1).
For AMIP, we use the 10-member ensembles of CESM2,
IPSL-CM6A-LR and MIROC6, with simulations starting in
1950, 1958, and 1979, respectively. For the other five models,
only one AMIP realization is used, with simulations starting

N: 9567

a

10°W 0° 10°E

10°N

75 80 85 90 95 100
%

1950 1960 1970 1980 1990 2000 2010

80

100

120

140

160

N
um

be
r 

of
 s

ta
tio

ns

b

FIG. 1. (a) Rain gauge stations with a minimum of 75% of temporal coverage over the 1950–2014 period. The color
shading corresponds to the proportion of valid years at each station (%). The N is the total number of observations
(station-years). (b) Time series of the total number of stations over the domain.
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in 1979. For consistency, we use the same subset of models for
the whole study.

Three other models are considered to form a subset of eight
models (ACCESS-ESM1-5, CESM2, CNRM-CM6-1, INM-
CM5-0, IPSL-CM61-LR, MIROC6, MPI-ESM1-2-LR, and
UKESM1-0-LL) having at least 10 members with all historical
forcings. This subset is used for evaluating the sensitivity of the
analyses to the number of members.

Model data are kept to their native horizontal resolution
for all the time series analyses in order to avoid data quality
downgrading. Only for the spatial pattern analysis are model
data regridded on a common 28 3 28 grid using a bilinear
interpolation.

c. Methodology

1) RAINFALL REGIME INDICES

Standardized indices relative to annual totals, annual max-
ima of daily rainfall and rainy days intensity and occurrence
are computed in order to compare models and observations
in a consistent way (see appendix A for calculation details).
Since we are interested in identifying the forced response in
models, the indices are computed for each member before av-
eraging across members and across models to remove part of
the ICV (Räisänen 2001; Hawkins and Sutton 2009; Deser
et al. 2012). Although the 8 3 2 realizations do not allow to
completely remove ICV, the results are only slightly sensitive
to ICV, as shown by the fact that randomly selecting members
(for models with more than two members available) barely af-
fects the results. The historical evolution has also been as-
sessed using models with 10 members under ALL forcing and
similar results were obtained.

2) WET DAY DEFINITION

A wet day threshold value (in mm day21) is defined for each
model to discriminate between dry and wet days; this more real-
istic identification of a rain event}as compared to using a
unique threshold for all models}might allow for a consistent
comparison of simulated and observed daily rainfall statistics.

We select the daily rainfall value that yields the regional mean
number of wet days (considering rainy days throughout the
year) best matching with observations over the 1980–2014 pe-
riod (in a multimember average, see Fig. S2). Note that to ac-
count for instrumental uncertainty, a threshold of 1 mm is used
for observations, removing less than 1% of the annual total. Ta-
ble 2 shows that, depending on the model, between 8% and
17% of the total rainfall is removed when considering daily
rainfall amounts above the threshold (except for the IPSL-
CM6A-LR model, where 29% is removed, meaning that a large
share of the total annual rainfall is produced by small daily rain-
fall amounts). Since the mean daily rainfall intensity of wet days
displays a fairly homogeneous spatial pattern (no significant
spatial variation, see Fig. S3), the intensity threshold value of
each model is deemed constant over the whole region.

3) DRY AND WET EXTREMES ASSESSMENT

Assessment of extremes related to precipitation in the
Sahel is sensitive to sampling effects, because of the high
space–time variability of rainfall, mostly convective in this
region (see e.g., Laurent et al. 1998). A statistical model

TABLE 1. Model names, horizontal resolutions (8 lat 3 8 lon), historical and DAMIP members used, AMIP members with period
of the simulation, preindustrial control simulation length (years), and references. Models whose name is set bold are used in the main
material, and the others are used to test the sensitivity of the results to the number of members.

Models
Horizontal
resolution

Historical and
DAMIP members AMIP members PICTL References

ACCESS-ESM1-5 1.25 3 1.88 r1i1p1f1; r3i1p1f1 r1i1p1f1 (1979–2014) 900 Ziehn et al. (2020)
CESM2 0.94 3 1.25 r1i1p1f1; r3i1p1f1 r1-10i1p1f1 (1950–2014) 1200 Danabasoglu (2019)
CNRM-CM6-1 1.4 3 1.41 r1i1p1f2; r2i1p1f1 r1i1p1f2 (1979–2014) 500 Voldoire et al. (2019)
HadGEM3-GC31-LL 1.25 3 1.88 r1i1p1f3; r2i1p1f3 r1i1p1f3 (1979–2014) 500 Andrews et al. (2019)
INM-CM5-0 1.5 3 2.0 r1-10i1p1f1 } 1200 Volodin et al. (2017)
IPSL-CM6A-LR 1.27 3 2.5 r1i1p1f1; r2i1p1f1 r2-r11i1p1f1 (1958–2014) 1200 Boucher et al. (2020)
MIROC6 1.4 3 1.41 r1i1p1f1; r2i1p1f1 r1-10i1p1f1 10 (1979–2014) 600 Tatebe et al. (2019)
MPI-ESM1-2-LR 1.86 3 1.88 r1-10i1p1f1 } 1000 Mauritsen et al. (2019)
MRI-ESM2-0 1.12 3 1.12 r1i1p1f1; r2i1p1f1 r1i1p1f1 (1979–2014) 200 Yukimoto et al. (2019)
NorESM2-LM 1.89 3 2.5 r1i1p1f1; r2i1p1f1 r1i1p1f1 (1979–2014) 500 Seland et al. (2019)
UKESM1-0-LL 1.25 3 1.88 r1-4i1p1f2; r5-7i1p1f3;

r8-10i1p1f2
} 1100 Sellar et al. (2019)

TABLE 2. Models wet day threshold (mm day21) and the
proportion of annual total rainfall removed by applying the
threshold (%).

Models
Wet day thresholds

(mm day21)
Annual rainfall
removed (%)

ACCESS-ESM1-5 4.0 15.4
CESM2 4.0 14.2
CNRM-CM6-1 3.5 7.8
HadGEM3-GC31-LL 2.5 8.2
INM-CM5-0 2.5 12.5
IPSL-CM6A-LR 6.0 29.8
MIROC6 4.5 15.0
MPI-ESM1-2-LR 5.0 11.9
MRI-ESM2-0 4.5 15.5
NorESM2-LM 4.0 16.8
UKESM1-0-LL 2.5 8.2
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based on a regional generalized extreme value (RGEV)
distribution is used here to limit these sampling effects.
This model allows for a consistent pooling of data into a
single sample by accounting for the spatial gradients of ex-
treme rainfall statistics, thus making the overall inference
more robust (see details in appendix A).

Annual maxima of daily rainfall (AMAX) are used as a wet
extreme metric. For dry extremes, annual maxima of the num-
ber of consecutive dry days (CDD) are considered; CDD se-
ries are computed on the June–September (JJAS) period i.e.,
the core of the rainy season in the Sahel. In both cases the
RGEV model is fitted on running 20-yr time windows span-
ning the 1950–2014 period (a 20-yr period is assumed to be a
good trade-off between inference robustness, by aggregating
a large enough amount of data, and temporal resolution). For
each 20-yr period, the T-yr return level at any point in space
is derived [where T is the return period, see Eq. (A5)] and its
change with respect to a baseline value is computed. As can
be seen in Eq. (A5), a change in return level may arise from a
change in any of the GEV parameters, or a combination
thereof. As such, the return level provides a synthetic vision
of the change in extreme value distribution, with the addi-
tional advantage to be more relevant from an end-user stand-
point; it will thus be used throughout this study.

Additional to fitting a stationary RGEV model to running-
window AMAX samples, use is made of a regional nonsta-
tionary GEV (RNSGEV) model wherein the location and
scale parameters are expressed as a linear function of time
(Chagnaud et al. 2022, see appendix B). To make the model
inference (i.e., the trend estimation) more robust against ICV
and sampling variance of the parameters, the RNSGEV
model is fitted on a single regional AMAX sample gathering
data from the two available members (for each model and ex-
periment). The return level of any rarity at any point in space and
any year may be derived from the RNSGEV model [Eq. (B2)],
and the linear trend computed accordingly.

4) RAINFALL RESPONSE AND SIGNIFICANCE ASSESSMENT

The hypothesis of a possible trend in rainfall statistics is
tested by looking at:

1) a nonparametric Theil–Sen slope estimate computed over
a period for which a forced signal is expected; namely, the
1980–2014 period,

2) a difference between two distinct periods of a time aver-
age of the quantity of interest.

The two sources of uncertainty affecting the signal detection
and attribution are due to (i) the role of ICV and (ii) different
model formulations (structural uncertainty). Considering model
ensembles allows sampling these uncertainties (see e.g., Lehner
et al. 2020): for a given model, a multimember ensemble allows
sampling ICV uncertainty while resorting to a multimodel en-
semble allows accounting for structural uncertainty. For this lat-
ter issue, a multimember ensemble (for each model) is necessary
in order to remove}at least partly}the influence of ICV when
assessing the structural uncertainty. Comparing the signal pro-
duced by distinct models may be flawed by the fact that each

model has its own (i) internal variability and (ii) sensitivity to
forcings and thus its own signal-to-noise ratio. Here the use of
standardized indices allows removing the effect of distinct model-
simulated ICV and thus to compare the models on a common
grounding. Addressing the model sensitivity issue is not within
the scope of this study and, without any a priori knowledge that
one of the selected models is especially unrealistic with respect to
reproducing the Sahelian rainfall regime, we considered all mod-
els equally in a “one model, one vote” approach.

The significance of the identified response against the influ-
ence of each source of uncertainty is assessed in various ways.
The multimodel, two-member 1980–2014 trends in ALL simu-
lations are first compared to (i) ICV alone, as sampled in the
PICTL simulations, and (ii) historical trends in NAT simula-
tions. A Kruskal–Wallis test, whose null hypothesis is that the
two samples are drawn from the same population without as-
suming a specific distribution or size of the compared samples,
is used in this aim.

The significance of any detected trend in the regional mean
daily rainfall intensity (I) and occurrence (N) signals is as-
sessed against the null hypothesis of no change using a one
sample, two-sided Student’s t test: for each year, the samples
of 8 3 2 I and N values are compared to 0, the expected value
in the absence of forced signal.

For the spatial pattern analysis, the model uncertainty is ac-
counted for by computing the intermodel agreement on the sign
of the response, quantified as a difference between two distinct
periods in the pointwise, time-average intensity and occurrence
values. The response is assumed robust against model uncer-
tainty when at least 75% (6 out of 8) of models (two-member
average for each) agree on the sign of the difference.

3. Recent Sahelian rainfall reinforcement as seen by
observations and climate models

a. Annual totals and heavy rainfalls

The evolution of the regional standardized indices (SI) for
annual totals (ATOT) and daily rainfall annual maxima, com-
puted from in situ observations (in black) and climate model
outputs are shown in Fig. 2. Atmosphere-only model simula-
tions (Figs. 2a,c) allow evaluating the capacity of climate mod-
els to capture the Sahelian rainfall response to SST patterns
(since observed SSTs are used in these runs). In the CESM2
AMIP simulations, covering the full period of observation,
the wet–dry transition of the 1950–80 period is well captured
(Fig. 2a). This is also the case, yet to a lesser extent, with the
IPSL-CM6A-LR model. This shows that the mechanisms link-
ing SST patterns to Sahel rainfall are satisfactorily simulated,
at least in these models.

Looking at various types of AOGCM simulations provides
some clues on the factors that best account for the rainfall
evolution observed over the past 65 years. While the magni-
tude of the mostly internally generated wet–dry transition is
not expected to be fully reproduced in the AOGCM ensem-
ble average, it is noteworthy that the ALL simulations cap-
ture a small part of the annual totals decreasing trend,
attributed to anthropogenic aerosols loading (Biasutti and
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Giannini 2006; Ackerley et al. 2011). One may thus expect
that this forcing influence is also captured when acting the
other way, i.e., when aerosols concentrations decrease; Figs. 2b
and 2d suggest it is indeed the case. However, the post-1980
forced increase seems to be of larger amplitude as compared to
the 1950–80 decrease, suggesting a contribution from other ex-
ternal forcing factor(s). The respective share of natural and an-
thropogenic forcing factors is further explored in section 4.

Having in mind that AOGCMs may be biased in terms of
SST patterns (see section 5b), comparing AOGCM and
AMIP simulations sheds an additional light on the role of
ocean-mediated internal variability with respect to that of ex-
ternal forcing factors. In this respect, a noticeable difference
between AMIP and ALL simulations is the starting year of
the rebound, which occurs about 10 years earlier in ALL
runs. The observed signal (as captured by the rain gauges)

therefore probably contains a forced component (as provided
by averaging over AOGCM runs) since the early 1980s, coun-
terbalanced by internal oceanic variability until the early 1990s
(as shown by the AMIP simulations). The 1980–90 period is
thus an illustrative example of how ICV and external forcings
may have compensating effects at the decadal scale.

The post-1980 increase in extreme daily rainfall intensity is
clearly visible in Fig. 2c, where the SI of the observed regional an-
nual maximum daily rainfall (AMAX) has increased from a value
of 20.5 in the early 1980s to almost 11.0 in the 2010s. Both the
ALL (Fig. 2d) and AMIP (Fig. 2c) simulations are well capturing
this trend, even though with a weaker amplitude. This is not the
case for the NAT simulations, suggesting that anthropogenic forc-
ings play a role in this surge of intense daily rainfall as well.

This issue is further explored by computing the 1980–2014
trends for the ATOT and AMAX indices in NAT and ALL
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FIG. 2. (a)–(d) Standardized indices (SI) of annual total (ATOT) rainfall for (a) AMIP simulations and
(b) AOGCM NAT (green) and ALL (orange) simulations. (c),(d) The SI of annual maxima daily rainfall (AMAX)
from AMIP and AOGCM simulations, respectively. In (a) and (c), CESM2 (blue), IPSL-CM6A-LR (brown), and
MIROC6 (green) are median and 61 standard deviation (s.d.) across the 10-member ensembles covering the
1950–2014, 1958–2014, and 1979–2014 periods, respectively. The purple line and shading correspond to the median and
61 s.d. across the single-member, five-model ensemble (see legend). Lines and shadings in (b) and (d) correspond to
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simulations. The distributions of these two sets of 8 3 2 trend
values are compared in Fig. 3 with the control-climate one,
obtained by computing the trend on two randomly sampled,
nonoverlapping 35-yr periods in each model’s PICTL simula-
tion. Since standardized indices are considered, all models
trend values may be pooled into one sample (for each index
and each experiment}ALL, NAT, and PICTL). For both
ATOT and AMAX, the distribution of the NAT simulations
(green) and of the PICTL simulations (gray) are not statistically
different according to a Kruskal–Wallis test, with p values of
0.85 and 0.11, respectively, and a mean trend close to 0 (in SI
unit yr21) in both cases. The ALL distributions (orange) are
clearly shifted toward larger values and statistically different
from the NAT and PICTL ones (p values , 0.01), with a
mean trend of 0.04 and 0.03 for ATOT and AMAX, respec-
tively (as compared to 0.05 and 0.06 for the observed ATOT
and AMAX, respectively). Simulations incorporating anthro-
pogenic forcing factors are thus the only ones able to detect
the observed increasing trend of both annual totals and ex-
treme daily rainfalls in the region. Similar conclusions are
drawn when performing the same analysis on the larger sam-
ples (8 3 10) available for the ALL and PICTL simulations
only (see Table 1), showing the robustness of our findings
against ICV and model uncertainty (Fig. S4).

b. Rainfall regime intensification in CMIP6 historical
simulations

Basically, the regimes of the annual totals and extremes are
controlled by two key variables: the number of occurrences
and the intensity of rainy days. In the following we thus ex-
plore how the evolution of these two variables compare to the
evolution of ATOT and AMAX. For this purpose, we com-
pute standardized indices, I and N, whose time evolution is

displayed in Fig. 4 for the AOGCM and AMIP simulations. In
ALL, the trends for both I and N are quite consistent with the
observations after 1990, while notable differences are seen be-
fore 1990 (Figs. 4b,d); this is, again, because the pre-1990 I and
N evolution mainly arises from ICV, as confirmed with the
CESM2 AMIP simulations (Figs. 4a,c, blue line and shading).

It is noteworthy that prescribing observed SST values brings
a larger improvement for N than for I, as can be seen when
comparing both the spread among models and the match with
observations in Figs. 4a and 4c. This shows that SSTs exert a
stronger control on the model-simulated daily rainfall occur-
rences, as reported by Giannini et al. (2013) and Salack et al.
(2014) for observations. On the other hand, intensity may be
more closely related to local processes, possibly involving inter-
actions with the ground surface and therefore less constrained
by SSTs, which would explain the larger intermodel spread.

How different from 0 are the forced (multimodel/multi-
member mean) regional intensity and occurrence standardized
values is quantified with a one sample, two-sided Student’s
t test [see section 2c(4)]. It is clear from Fig. 5, showing the
p value of the test for each year, that here again the rainfall
regime evolution is largely due to large-scale anthropogenic
factors: the p values are smaller than 1% most of the time in
ALL, except around the center of the reference period used
for standardization (1979–2008). In NAT, the p values are
generally above 5%, meaning that the null hypothesis of no
change may not be rejected at this risk level.

c. Dry and wet extreme return levels evolution

A regional GEV distribution is used here to model CDD
and AMAX time series on moving 20-yr time windows, al-
lowing to compute the 10-yr return levels for characteriz-
ing dry and wet extremes evolution [see section 2c(3)]. In
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FIG. 3. Probability density functions (PDF) of the (a) SI ATOT and (b) SI AMAX linear trends (in SI unit yr21)
computed over 1980–2014 for NAT (green) and ALL (orange) runs and on nonoverlapping 35-yr time periods ran-
domly sampled in the preindustrial control (PICTL) simulations (gray). The means of the 16 trends computed for
each type of simulation are displayed as vertical lines. The observed trend is indicated by the black vertical line.
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observations, dry extremes show a persistent increase from
1960 to 2000 and a plateau afterward (black curve in Fig. 6a).
In spite of this fairly homogeneous increase, the N evolution
(black curve in Figs. 4c,d) leads to distinguish two distinct peri-
ods. As expected, the systematic decline in N from 1950 to

the mid-1980s has produced an enhancement of the dry spell
lengths (Le Barbé et al. 2002). Afterward, the occurrence
increase is associated with an increase in I (Fig. 4a); because
stronger}and potentially larger (e.g., Prein et al. 2017;
Lochbihler et al. 2019)}storms tend to remove more moisture
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from the atmosphere, this might as well have favored longer
inter-event durations (Trenberth 2011). The slight levelling-off
of I after 2000 would thus explain the observed CDD plateau.
In models, CDD remains stable during the first period, likely
because most of the occurrence decline was internally gener-
ated and therefore not present when averaging across multiple
AOGCM realizations. The recent period, however, gives an
illustrative example that robustness does not imply realism,
with none of the models capturing the increasing trend in
extreme dry spell length. This conclusion proves to be
hardly sensitive to the wet day threshold value (Fig. S5a)
and points to an intrinsic deficiency of models, as further
discussed in section 5d.

Wet extremes tell a different story: the pattern of change in
daily rainfall 10-yr return level is in overall agreement with
that of AMAX depicted in Fig. 2d, with a signal mostly flat
prior to 1980 and an increasing trend starting at the turn of
the 1980s (Fig. 6b). Note that whereas the model-simulated SI
AMAX remains lower than the observed one (Fig. 2d), the
10-yr return level is most of the time overestimated; this is be-
cause some models simulate a larger increase in the scale pa-
rameter of the regional GEV distribution, which more strongly
affects the strongest (or rarest) events, a feature not captured by
the SI. Also worth mentioning is the larger spread among mem-
bers prior to 1980 with, interestingly, some members capturing
the magnitude of the strong decreasing trend in extremes, of
215% in 20 years. The larger intermodel agreement after 1980
indicates that this signal is at least partly externally forced, while
the almost flat signal in NAT supports the anthropogenic origin
of this rainfall intensification.

4. Mechanisms for rainfall regime changes of the
last decades

In the previous section, CMIP6 models have been shown to
capture the observed evolution of key parameters of the Sa-
helian rainfall regime; namely, the annual totals, the extreme
daily rainfalls, the mean intensity, and the mean annual num-
ber of rainy days. Moreover, an unequivocal influence of

anthropogenic forcing factors on these evolutions has been
highlighted. Building on these two aspects and because one
may expect the intensity and frequency to respond to differ-
ent factors in different ways, this section delves into the re-
spective roles of external factors on the recent rainfall regime
evolution.

a. Intensity and occurrence

To assess more finely how internal variability and external
factors may have contributed to triggering the new rainfall re-
gime that has been taking shape since the mid-1980s, it is
worth looking at the spatial patterns of changes in intensity
and occurrence. To filter out the large interannual variability
at the GCM mesh scale, the time evolution of the rainfall re-
gime is characterized by computing the differences of I and N
averaged over two 30-yr periods (1950–79 and 1985–2014) for
ALL and NAT-, AER-, and GHG-only simulations, using the
same subset of two-member ensembles as previously.

For intensities, the ALL simulations display a widespread
increase, with large model agreement (6 models out of 8 agree
over 73% of the Sahel domain, Fig. 7a). Aerosols and GHG
effects combine well to explain this overall pattern of evolu-
tion, albeit with different spatial patterns when looking at
each of these two factors separately. Aerosols drive a wide-
spread intensity increase, with good model agreement (75%
of the models agree on the sign of change over one-half of the
domain, Fig. 7e). GHG runs display a strong intensity in-
crease in the easternmost part of the Sahel (Fig. 7g). A dipole
structure of the mean rainfall response to increasing GHG
concentrations is a robust feature of future projections in the
Sahel, with a wetter east and a drier west (Fontaine et al.
2011; Monerie et al. 2012). It has been suggested that a rein-
forcement/displacement of the Saharan heat low could drive a
stronger moisture convergence over the eastern Sahel (ES),
an enhanced southwesterly flow adding up to the purely ther-
modynamical effect of an increased atmospheric moisture
holding capacity, as suggested by observations (Evan et al.
2015; Lavaysse et al. 2016) and climate models (Gaetani et al.
2017; Monerie et al. 2021). Over western Sahel (WS), ALL
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FIG. 6. Change in the 10-yr return level of (a) dry spell length and (b) daily rainfall relative to the 1972–91 baseline
value (%) for 20-yr moving windows spanning the 1950–2014 period. The orange line and shading are the median and
61 s.d. across multimodel two-member ensemble medians. Black line and gray shading correspond to the observed
values and associated uncertainty due to network configuration.
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runs well capture the intensity evolution as a result of the
AER and GHG effects (Figs. 8a,e,g). The larger spread in
AMIP runs over WS confirms the limited SST influence
on intensity, even in this coastal region (Fig. 8i).

Regarding occurrences, the southwest–northeast gradient
of the occurrence evolution in ALL is an obvious superimpo-
sition of the AER and GHG fields (Figs. 7b,f,h). The latitudi-
nal gradient in AER runs likely reflects a further north
migration of the ITCZ rainband in response to the reduction
in aerosols emissions (Rotstayn and Lohmann 2002; Chang
et al. 2011) with, in absolute terms, an additional ;2 rainy
days per year over the whole region between the two consid-
ered periods (not shown). The occurrence evolution in ALL

is slightly underestimated over WS (Fig. 9a) while it is in
much better agreement in AMIP runs (Fig. 9i). This suggests
that an internally generated mode of SST variability might
have counteracted the drying effect of GHG depicted in
Fig. 7h, though this discrepancy may also arise from a defi-
ciency of AOGCMs to capture the correct SST trend. The
opposite holds over ES, where the increase of occurrences is
slightly overestimated in ALL because of the combined ef-
fect of aerosols and greenhouse gases forcing (Figs. 9b,f,h).
In AMIP runs the occurrence increase over ES is slightly
leveled-off (Fig. 9j). The larger intermodel spread (as com-
pared to that over WS) is likely due to the more remote oce-
anic influence in this area.
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FIG. 9. As in Fig. 8, but for the regional mean occurrence (N).
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Another noteworthy feature is the dipole pattern shown in
Fig. 7h, with a substantial occurrence reduction over WS while
occurrence increases over ES, with good model agreement.
Thus, the well-documented Sahelian dipole turns out to be a
combined effect of intensity increase over the ES and occur-
rence shrinking over the WS under GHG forcing (see Figs. 8h,
9g, respectively). Interestingly, these two features are fairly ro-
bust across models, in spite of the relatively limited GHG forc-
ing strength of the historical period. In addition, using the
idealized experiment wherein CO2 concentration exponen-
tially increases at a rate of 1% yr21 starting from a preindus-
trial control state (1pctCO2), the dipole-like structure of I and
N evolution turns out to be monotonous (not shown). Thus,
were the GHG emissions to continue in the coming decades,
one may not exclude this occurrence–intensity dipole to
strengthen. This would lead to further rainfall intensification,
keeping in mind that ICV may either damp or amplify this
forced signal on interannual to decadal time scales.

b. Recent wet extremes trend

Based on the use of a regional GEV model it was shown in
section 3 that the ALL simulations realistically reproduce the
intensification trend of wet extremes seen in observations
from 1980 to 2014 (Figs. 2d, 6b). We will look below at this
evolution in single-forcing simulations, using a nonstationary
regional GEV model wherein both the location and the scale
parameters vary linearly with time over the 1980–2014 period
(see appendix B for details).

For each model’s two-member ensemble we derive the
10-yr return level trend. Figure 10a shows that over the
whole Sahel, the median trend across models in ALL
(5.43% decade21) matches strikingly well with the observed
value of 5.29% decade21 [(4.2–6.2) 50% confidence interval,
black line and gray shading], though with a relatively large inter-
model spread (from 2.7% to 13.8% decade21). Aerosols contrib-
ute the largest share of this trend (3.7% decade21) with a narrow
spread (1.7%–6.1% decade21), consistent with the good model
agreement shown in Figs. 7e and 7f. GHG runs have a positive
median trend (1.8% decade21) affected by a large intermo-
del spread (from 24.1% to 6.3% decade21), largely explain-
ing the spread seen in ALL: the IPSL-CM6A-LR model
produces the largest trends in ALL (13.8% decade21) and
GHG (6.3% decade21) runs, whereas the CESM2 model
has the second smallest trend in ALL (3.0% decade21) and
a largely negative trend in GHG (24.1% decade21). This
regional behavior also applies at the subregional scales, as
depicted in Figs. 10b and 10c for the Western and Eastern
Sahel, respectively. Moreover, it shows some consistency
with the spatial pattern analysis presented in section 4a
(Figs. 8, 9): over WS, there is a gap of 1.4% decade21 be-
tween the observed and ALL simulation trends, likely re-
sulting from the larger ICV influence over this area. Over
ES, the NAT trend is slightly larger and with no negative
trend. The larger signal in GHG over ES results from the
large intensity increase (Fig. 8h); the large spread suggests
that extreme rainfall events are especially sensitive to model
formulation, as discussed in section 5c.

5. Discussion

Our qualitative attribution analysis of the rainfall regime
evolution in the Sahel leads us to conclude that anthropogenic
forcing factors have played a significant role in driving the re-
cent rainfall intensification trend. At the same time, the Sahel-
ian rainfall is characterized by a strong decadal variability,
largely associated with the SST patterns in various oceanic
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FIG. 10. The 1980–2014 trends of the daily rainfall 10-yr return
level (% decade21) derived from the RNSGEV model fitted on
two-member samples of annual maxima daily rainfall for each
model over (a) the whole Sahel, (b) western Sahel, and (c) east-
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basins. Climate model biases in reproducing important features
of oceanic spatial and temporal variability are known to be es-
pecially strong. One may thus wonder to which extent these
biases may impair our confidence in the rainfall regime evolu-
tion produced by these models regarding both the past and the
future. In this section the discussion first bears on the capac-
ity of GCMs to capture the rainfall evolution over a specific
region, a major advance of this study. Second, we discuss
whether this finding could arise for wrong reasons (typically
through compensating effects). Building on the assumption
that models are indeed behaving correctly for the right rea-
sons, we discuss the attribution of this evolution to anthro-
pogenic forcing factors. The caveat previously highlighted
regarding the incapacity of models to capture the evolution
of extreme dry sequences leaves room for future research,
as finally discussed.

a. Evolution of rainfall values

Whether considering annual totals, maximum annual rain-
fall or mean daily rainfall, AMIP simulations well capture the
decline of the 1950–85 period (in the CESM2 model and to a
lesser extent in the IPSL-CM6A-LR model), providing confi-
dence in the capacity of climate models to correctly apprehend
the WAM sensitivity to SST patterns. The post-1985 rebound
of annual rainfall, associated with higher maximum annual
and mean daily rainfall is also well captured (Figs. 2, 4).
This means that despite their different structures, the vari-
ous GCMs used in this study detect the proper amplitude of
the recent intensification with respect to the 1950–85 decline,

as soon as they are forced by the observed SST and sea ice
cover values. More specifically, they correctly diagnose an
annual mean rainfall that remains below the 1950s high, a
maximum annual daily rainfall that is in the same order as
in the 1950s and a mean daily rainfall that is now higher
than in the 1950s. This latter point deserves some attention.
Relative to the rainfall regime that prevailed over the
1950–70 period, there is a stronger increase of the mean
daily rainfall than of the maximum annual daily rainfall and
this is due to a persisting deficit of rainfall occurrences. The
fact that GCMs are able to capture this fundamental fea-
ture of the Sahelian rainfall regime evolution provides
some confidence for carrying out impact studies and plan-
ning adaptation strategies, keeping in mind that the decadal
variability is interfering with long term trends in producing
the actual pattern of evolution. In this respect, one may
infer that the difference in timing and amplitude of the
post-1985 intensification between AOGCMs and AMIP
simulations represents the effect of the internal variability,
and more specifically}for that particular period}the re-
bound from the unprecedented drought of the 1970s and
1980s: AMIP simulations combine the two effects while the
AOGCMs ensemble average illustrates the forced evolu-
tion. Given the requirements for this type of study, only a
limited number of models could be used. However, as can
be seen from Fig. 11, the models used in this study have
substantially different control climates, which seems to in-
dicate that the detected trends stem from a robust regional
climatic signal.

6 8 10 12 14
IPICTL mean [mm d 1]

10

0

10

20
10

-y
r 

rl 
tr

en
ds

 [%
 d

ec
ad

e
1 ]

a

1.5 2.0 2.5 3.0 3.5
IPICTL 11-yr mean normalized s.d. [%]

10

0

10

20

10
-y

r 
rl 

tr
en

ds
 [%

 d
ec

ad
e

1 ]

b

Obs
ACCESS-ESM1-5 (19)
CESM2 (10)
CNRM-CM6-1 (14)
HadGEM3-GC31-LL (5)
INM-CM5-0 (10)
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FIG. 11. The 1980–2014 10-yr return level trends in ALL simulations as a function of model’s daily rainfall charac-
teristics from the PICTL simulation. (a) The horizontal axis is the regional mean daily rainfall intensity (I; mm day21)
averaged across n3 35 years where n is the available number of members or 35-yr PICTL time slices, for each model
(the smallest is chosen, see legend). (b) The horizontal axis is the standard deviation of the 11-yr running mean I time
series, normalized by the mean I (%). The vertical lines correspond to the spread across the n trend values. The ob-
served value is shown with a black dot in (a).
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b. Could the detected trends arise from
compensating biases?

This section addresses the issue of whether}and the ex-
tent to which}climate model biases in representing inter-
nal modes of climate variability and sensitivity to forcing
factors may affect the conclusions of this study. In fact,
compensating effects between these two types of deficien-
cies have the potential to yield good results for the wrong
reasons, thus leading to draw incorrect conclusions. This is-
sue also has implications for decadal predictability as well
as century-long projections.

1) BIASES IN ICV

One major concern for the purpose and conclusions of
this study is the difficulty of models for capturing the spatial
and time patterns of SSTs, especially their decadal modes of
variability, with such biases documented in CMIP3 and CMIP5
models (e.g., Mohino et al. 2016; Yan et al. 2018; Wills et al.
2019). Although a comprehensive evaluation of CMIP6 models
is not available to date, the simulation of Atlantic multidecadal
variability seems to be improved in several state-of-the-art
AOGCMs, such as the CNRM (Voldoire et al. 2019) and
IPSL (Boucher et al. 2020; Bonnet et al. 2021) models used
here. Also of interest is the capacity of models for capturing
the climate impacts of such modes of variability, which have
been shown to differ substantially among a set of CMIP6 mod-
els by Hodson et al. (2022).

Both features}Atlantic decadal variability and its climate
impacts}may be closely related to model biases in the oce-
anic mean state and the associated mechanisms (including
coupling with the atmosphere), as documented in CMIP5
(Richter and Xie 2008; Richter et al. 2014; Rodrı́guez-Fonseca
et al. 2015, among others) and CMIP6 (Richter and Tokinaga
2020) models, this latter study reporting only slight improve-
ments in CMIP6 models. We note that model biases in various
regions may affect the overall model behavior in different
ways: decadal-scale variability primarily originates in northern
North Atlantic (Wills et al. 2019) while Sahel rainfall variabil-
ity and change is mainly ruled by tropical Atlantic SSTs.

Understanding how these various sources of error interact
and (may) change with changing external forcings is essential
to increase confidence in attribution and projection studies.

2) BIASES IN SENSITIVITY TO EXTERNAL FORCINGS

Another important aspect has to do with the sensitivity of
model-simulated SSTs to different external forcing agents, es-
pecially GHG and aerosols. Regarding GHG-driven global
warming (GW), Mohino et al. (2016) show, using one GCM,
that the pattern of Sahel rainfall response to GW is not cor-
rectly simulated, mainly because of an incorrect tropical At-
lantic warming trend (a finding in line with Shin and
Sardeshmukh 2011). For aerosols, Menary et al. (2020) find
that CMIP6 models have a larger sensitivity to changes in at-
mospheric aerosols loading as compared to CMIP5 models,
mainly due to the indirect aerosols effect being now widely ac-
counted for. This (possibly overestimated) sensitivity may

well overwhelm an underestimated response to GHG forcing
and/or a too weak decadal variability; this would lead to
overly attribute the recent intensification to aerosols at the ex-
pense of other factor(s).

Notwithstanding these limitations, there are at least two
reasons that support our conclusions that external forcing fac-
tors had an indisputable influence in shaping a significant evo-
lution of the Sahelian rainfall regime since 1990. First, several
previous studies have reported the implication of various forc-
ing factors in the recent rainfall rebound (Dong and Sutton
2015; Giannini and Kaplan 2019; Marvel et al. 2020), even
though noting that model underestimation of decadal-scale
SST variability may reduce the spread about the estimated
forced trend, leading to an overestimated signal-to-noise ra-
tio. Second, working in a multimodel framework reduces the
possibility of being correct for the wrong reasons.

c. Attribution

Assuming AOGCM simulations to be mostly influenced by
the modification of the external forcing factors combination
leads to assess whether one can disentangle the influence of
the two main factors, aerosols and GHG concentrations. To
that end, CMIP6-DAMIP simulations (Gillett et al. 2016)
were used. Several authors consider that the unusual SST pat-
tern of the Atlantic Ocean having caused the severe 1970–90
drought originates in the aerosol atmospheric content peaking
in the 1970s in the Northern Hemisphere, before declining as
a consequence of the regulations imposed since (see Hoesly
et al. 2018). A significant share of the post-1985 evolution
could thus be associated with this decline of the aerosol con-
tent, a hypothesis confirmed by our analysis showing that
aerosols-only simulations display a more consistent and ro-
bust pattern of the post-1985 evolution (Fig. 7), and account
for the largest share of the recent intensification trend of daily
rainfall extremes (Fig. 10). The aerosols-only runs reproduce
especially well the mean daily rainfall increase over the west-
ern halve of our study domain (Fig. 8e). By contrast, the GHG
signal is weaker even though clearly present over the eastern
Sahel. The spread of the 1980–2014 extreme rainfall trends
produced by GHG simulations is likely linked to this GHG
signal still being relatively weak in the first 15 years of the cen-
tury. This emergence issue was difficult to address here
given the small number of available GHG-only simulations.
Dispersion between models may also be rooted in the mani-
fold nature of the WAM response to global warming (e.g.,
Giannini 2010; Gaetani et al. 2017; Fitzpatrick et al. 2020;
Chagnaud et al. 2020), making the simulations markedly sen-
sitive to differences between models in representing one or
several key mechanisms, especially those controlling scale
interactions}for instance between regional climate dynamics
and convection [model structural differences have been
shown to account for a large share of the total uncertainty in
future projections of regional precipitation (Hawkins and
Sutton 2011), especially for monsoonal rainfall extremes
(Zhou et al. 2020)]. However, since the GHG signal is expected
to become more and more dominant, future sets of simulations
incorporating themost recent GHG concentrations could display
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smaller relative spreads and provide more confidence in end-of-
the-century projections.Meanwhile, there is already sufficient ev-
idence of the capacity of the current generation of climatemodels
to attribute part of the ongoing Sahelian rainfall intensification to
the GHG concentrations increase so as to take it into account in
adaptation policies.

d. Evolution of rainfall occurrences

This paper has addressed the intensification issue in its
broad sense, that is, evolving rainfall intensities and occur-
rences as reported in observations by Salack et al. (2016) and
Panthou et al. (2018). However, while climate models con-
vincingly detect the increase of mean rainfall intensities and
extreme rainfall, the picture is somewhat bleaker for rainfall
occurrences and the associated intraseasonal variability that
largely controls water runoff and crop yields. On the one
hand, the overall regional increase of the mean number of
rainy days per year since the end of the 1980s is well detected
by AOGCMs (Fig. 4d) as well as by AMIP (Fig. 4c) simula-
tions. The latter also perfectly capture the fact that the mean
occurrence rate remains much smaller than in the 1950s. This
occurrence rate rebound seems mostly driven by the evolu-
tion of the aerosols forcing, while GHG-content increase en-
tails an occurrence rate increase in the northeastern Sahel
and a decrease elsewhere}especially significant over Senegal
(Figs. 7h, 9g). On the other hand, when looking at extreme
dry spell length, GCM simulations fail to capture the strong
increase detected in observations (Fig. 6a). In other words, in
nature, the mean number of rainy events has increased over
the last decades but the probability of getting an unusually
long dry spell has also increased, meaning a changing intra-
seasonal distribution of rain occurrences; in climate models
the mean number of rainy events also increases but the distor-
tion of the intraseasonal distribution is not seen. There are at
least two factors that may explain this flaw: the first one is re-
lated to models while the second concerns the way extreme
dry spells are statistically dealt with. From their analysis of in
situ daily rainfall data in Senegal and Niger, Salack et al.
(2014) evidenced the instrumental role of global SST anomaly
patterns in conditioning the frequency of Sahelian dry spells.
One may then think of a specific SST pattern causing the ob-
served dry extremes trend not captured by the models. How-
ever, performing the CDD analysis on AMIP runs brings very
little improvement (Fig. S5b), rather pointing to an intrinsic
model deficiency. Supporting this, the recent study of Berthou
et al. (2019), based on a convection-permitting model simula-
tion, suggests that the tendency of GCMs to overestimate
rainfall frequency}owing to the parameterization of convec-
tion (on this issue see e.g., Hagos et al. 2021)}is responsible
for this flaw, thus pointing to an irreducible deficiency in this
particular respect. Another set of factors to have in mind
when comparing extreme dry spell length in observations and
in models relates to statistical considerations and more specifi-
cally to the choice of the diagnostic variable and of the statisti-
cal metrics. First, the range of variation of the dry spell length
is not so large, making the longest dry spell in a year not so
good a diagnostic variable. Assessing the number of dry spells

over a given critical threshold might be statistically more sig-
nificant as well as more relevant in terms of impact on crop
yields, for instance. Second, using a GEV-based model for
representing the statistical distribution of extreme values as-
sociated with a discrete variable is questionable. It appears
that a more specific and in-depth study should be carried out
on the issue of the evolution of extreme dry spells in a context
of increasing GHG concentrations.

6. Conclusions

The Sahel has been experiencing large rainfall fluctuations
since the middle of the twentieth century, with two dominant
sequences: (i) from 1950 to the end of the 1980s, a 20-yr wet
period followed by a 20-yr widespread and intense drought;
(ii) since the early 1990s, a partial recovery of the annual rain-
fall associated with an overall intensification of the rainfall re-
gime. While rainfall intensification is an expected outcome of
global warming, other factors may have a substantial influence,
most notably the strong internal variability of monsoon climates,
heavily influenced by SST pattern oscillations. An array of fully
coupled and atmosphere-only state-of-the-art climate model sim-
ulations are used here to investigate whether they can help deci-
phering the various factors at play. Analyzing four regional
rainfall indicators}the annual total rainfall, the mean daily rain-
fall intensity, the mean number of rainy days per year and the an-
nualmaximumdaily rainfall}leads to the following conclusions:

• The intensification of the last 30 years is seen in both AOGCM
and AMIP simulations, with the AMIP signal being closer to
the observed one. This tends to establish that this intensifica-
tion is partly driven by external forcing modifications (corre-
sponding to the component seen by the AOGCMs) associated
with the internal variability of theWest Africanmonsoon.

• Comparing the response of aerosols-only and GHG-only
AOGCM simulations indicates that a notable part of the
intensification}averaged over the last 30 years}was
mainly driven by a decreasing atmospheric aerosols content
starting at the end of the 1970s, whether due to an indirect
effect on the monsoon dynamics through their influence on
SST patterns or to a more direct/local effect.

• Looking at regional patterns allows us to further refine
these conclusions. The continuing increasing trend of the
mean daily rainfall in the east of the study domain is seen
in both aerosols-only and GHG-only simulations, indicating
they both play a role; by contrast, GHG-only simulations
fail to capture the more complex signal observed in the
west, indicating a prominent role of the aerosols there,
probably through their influence on SSTs. The same quali-
tative result hold for the occurrences, with a GHG signal
capturing much better the observed signal in the east than
in the west. It may thus be inferred that the increasing
GHG atmospheric content is a dominant forcing of the ob-
served intensification in the eastern Sahel.

• While the climate simulations used here capture reasonably
well the time–space evolution of the rainfall occurrences over
the last 30 years, they do not correctly reproduce the observed
trend of longer extreme dry spells. There is room for further
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work on this issue, if only to refine themetrics and statistical ap-
proaches to be used for investigating this specific topic.

These results are found to be robust across a range of
CMIP6 models. This in turns provides some confidence for us-
ing future hydroclimatic trajectories derived from climate sim-
ulations under various emissions scenarios (O’Neill et al.
2016) as a far-from-perfect but nevertheless meaningful basis
for building adaptation strategies to rainfall regime changes.
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APPENDIX A

Calculation of Standardized Indices

a. Annual total

The standardized index for annual totals (SI ATOT) is
computed as follows: the interannual mean of annual totals
is computed at each station (ATOTj) and averaged across sta-
tions, yieldingATOTS . The regional anomaly time series is com-
puted as follows:

ATOT(i) 5 ATOTS 1 E
J [ATOTj(i) 2 ATOTj ], (A1)

where i stands for year and j stands for station/grid point.
Standardization is computed with the mean and standard
deviation of the ATOT time series over the period 1979–
2008. All stations having at least 50 valid years over the pe-
riod 1950–2014 are used for the SI ATOT computation.

b. Daily rainfall annual maxima

Calculation of standardized index for annual maxima of daily
rainfall (SI AMAX) is based on a regional GEV (RGEV)model
wherein the location and scale parameters vary linearly with lati-
tude [Eq. (A2)] to account for the well-marked south–north gra-
dient in these two parameters (after Panthou et al. 2012). The
model is inferred with amaximum likelihood estimation:

{m(lat) 5 m0 1 m1 3 lat
s(lat) 5 s0 1 s1 3 lat
j

: (A2)

The RGEV model used for observations includes a linear
dependence to longitude for m and s:{m(lat, lon) 5 m0 1 m1 3 lat 1 m2 3 lon

s(lat, lon) 5 s0 1 s1 3 lat 1 s2 3 lon
j

: (A3)

From the RGEV model CDF at station/grid point j, Fj, the
frequency of the annual maxima of daily rainfall zi,j is com-
puted, for each year i:

p(i, j) 5 Fj(zi, j): (A4)

By construction, the p(i, j) are uniformly distributed. For
each year the mean and standard deviation across stations
of the p values is computed. The SI AMAX is obtained by
standardizing these time series with respect to their mean
and standard deviation over the period 1979–2008. All sta-
tions having at least 24 years over the 1979–2008 period are
used for fitting of the RGEV model.

The return level iT, with return period T, is the daily rainfall
amount that has a 1/T chance to occur each year over the pe-
riod used to fit the model. It can be computed as follows:

iT 5 m 1
s

j
2log 1 2

1
T

( )[ ]2j

2 1
⎧⎪⎪⎪⎨⎪⎪⎪⎩ ⎫⎪⎪⎪⎬⎪⎪⎪⎭ : (A5)

c. Wet days intensity and occurrence

The methodology used to obtain the regional mean daily
rainfall intensity and number of wet days, described in the
supplementary material of Panthou et al. (2018), goes as
follows (we denote X the variable to compute):

• At each location j (station/grid point) having Yj years avail-
able, the interannual mean is computed:

Xj 5
1
Yj

∑
Yj

i
Xi: (A6)

• The regional mean of the pointwise interannual means is

computed: XS 5 E
j
[Xj ].

• The regional mean time series is obtained as follows:

X(i) 5 XS 1 E
j
[Xj(i) 2 Xj ]: (A7)

The index is then standardized using the mean (X) and
standard deviation (sX ) over the reference period:

X 5
X 2 X
sX

: (A8)

APPENDIX B

Regional Nonstationary GEV (RNSGEV) Model

The RGEV model parameters [Eq. (A2)] are expressed as
a linear function of time to account for systematic changes in
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rainfall extremes over a given period. The RNSGEV model
parameters read as follows:{m(lat, lon, t) 5 (m0 1 m1 3 lat 1 m2 3 lon) 3 (1 1 a3 3 t)
s(lat, lon, t) 5 (s0 1 s1 3 lat 1 s2 3 lon) 3 (1 1 a3 3 t)
j

:

(B1)

Similarly to Eq. (A5), the space- and time-dependent return
level iT(lat, lon, t) with return period T is the daily rainfall
amount that has a 1/T chance to occur at year t and loca-
tion (lat, lon). It can be computed as follows:

iT(lat; lon, t) 5 m(lat; lon, t) 1 s(lat; lon, t)
j

3 2 log 1 2
1
T

( )[ ]2j

2 1
⎧⎪⎪⎪⎨⎪⎪⎪⎩ ⎫⎪⎪⎪⎬⎪⎪⎪⎭, (B2)

where m(lat, lon, t), s(lat, lon, t), and j are the RNSGEV
model parameters.

The model inference uncertainty is estimated with the
semiparametric bootstrap resampling technique described in
Chagnaud et al. (2021). The 50% confidence intervals of
the T-yr return level trends are quantified as the 25th–75th
percentile range across 200 sets of bootstrapped trends.
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