

Modeling hydrological processes of the Lake Titicaca hydrosystem under changing climate and anthropogenic conditions

Funded by AFD under the CECC (Water cycle and climate change in the intertropical region) project

PhD student: Nilo Alberto LIMA QUISPE

PhD directors: Thomas CONDOM (IRD, IGE), Denis RUELLAND (CNRS, HSM)

Partners involved: IHH-UMSA, SEI-US, SENAMHI Peru, SENAMHI Bolivia, ALT

April 24, 2023

Context

Lakes in the world:

- Many lakes around the world have experienced a reduction in their water levels (Wurtsbaugh et al., 2017).
- Lakes are sensitive to variations in inflows, precipitation, and evaporation (Setegn et al., 2011).

The Titicaca lake:

- Historical records of Lake Titicaca's water levels show a variation of 5 m, with the lowest levels in 1944 and the highest in 1986 (Ronchail et al., 2014).
- These fluctuations have primarily been attributed to climate variability (Lima et al. 2021).

Hydrological processes in lacustrine hydrosystems

What are the natural hydrological processes that occur in the upstream catchments?

Precipitation (rain and snow), sublimation, ice melt, snow melt, evapotranspiration, groundwater exchanges, runoff.

What are the anthropogenic activities that can impact the catchment functioning?

Water withdrawals (i.e. irrigation and domestic uses), reservoirs management.

What are the hydrological processes that impact the lake?

Upstream inflow, direct precipitation and evaporation, groundwater losses and gain, downstream outflow, . . .

PhD questions

Main scientific questions

- What are the hydrological processes that control interannual and seasonal water level variations of large lakes in semi-arid environments?
- How could these processes be altered by the potential effects of climate change?

Additional questions

- How can we represent or capture the hydrological processes in a complex and poorly gauged hydrosystem?
- Which processes are dominant on the interannual and seasonal hydrological response of lakes and which can be considered as local and negligible? To what extent is it convenient not to include some local or insignificant processes?
- Any question about future scenarios (lake drying when the water level is below of outlet)

Developing an integrated modeling chain

Two main goals

- Representing the hydrological processes that control interannual and seasonal variations in the water level of large lakes (daily time step over a multidecadal past and future period).
- Assessing the potential impacts of projected climate change on water management.

Technical challenges associated to the modeling chain

- Development and implementation of a model adapted to a poorly gauged region.
- Modeling chain that includes: snow accumulation, ice and snow melt, rainfallrunoff, basin-scale irrigation, water consumption, and the lake (inflows and outflows).
- Building of climate change and water management scenarios.

Study area

The Lake Titicaca hydrosystem

Hydrosystem area:	57,000 km²
Lake altitude:	3,800 m asl
Lake area:	8,400 km²
Lake maximum depth:	280 m
Lake volume:	932 km³

Lake outlet – Compuerta Vagon

Precipitation and temperature (GMET dataset)

Land cover/use 2020

Glaciers

Glacier area

Randolf Glacier Inventory V6.0

- ~300 glaciers
- i.e. 270 km² (0.5% of the total area)

Glacier volume

Based on Farinotti et al. (2019)

- Glacier volume (we): 12 km³
- i.e. ~1% of the lake volume (930 km³)

Available data

Availability of precipitation and temperature data in space and over time

0 50-75

>75

3796

What precipitation data are available? (over time)

What temperature data are available? (over time)

Data for other variables (HR, WS, SD) were also collected on a daily time step

Gridded Meteorological Ensemble Tool (GMET)

Tool

- GMET is an algorithm for the probabilistic interpolation of point data of precipitation and temperature (Clark and Slater, 2006; Newman et al., 2015).
- Based on this algorithm, a gridded product was generated for Bolivia and its transboundary basins in 2017.
- GMETv1.0 Bolivia has 30 ensemble members. The average of the ensembles was used.

Main characteristic

- Variables: precipitation, mean temperature and diurnal range
- Spatial resolution: ~5 km
- Temporal resolution: daily
- Period: 1/01/1980-31/09/2016

Available control data (in space) – snow and hydrology

Available control data in streamflow and water levels (over time)

17

Water level-Lake Titicaca

Models

WEAP: 2022.0 Area: Titicaca_Poopo ModelV 4 Scenarios (1 Active) 1980-2015 (monthly) x=-64.62, y=-15.01 Licensed to: Nilo

Integrated modeling chain at the daily time step

Hydrological model (catchment model)

- Snow and ice modeling
- Production (soil moisture) and routing

Irrigation model

- Phenological dynamics of crops (Kc)
- Land use dynamics
- Estimated net ET crop
- Return flows

Lake model

- Inflows (surface and groundwater)
- Direct precipitation and evaporation
- Bathymetry relationship between water volume and water levels
- Outflow (downstream, groundwater losses)

Snow and ice modeling: spatial disaggregation

Zongo site for calibration

- The Zongo glacier is the most studied glacier near the study area.
- It has data since the early 1990s.
- Some of the data collected are precipitation, temperature, humidity, wind, radiation, mass balances, ELA, etc.
- The area of the Catchment up to the Tubo station is 3.6 km².
- The glacierized area corresponds to 66%.

Snow and glacier model performance in Zongo

Model Parameters

Ν	Parameter	Unit	Comments
1	T_s	°C	Fixed
2	T_l	°C	Fixed
3	T_m	°C	Fixed
4	<i>a</i> _{snow}	mm/day/°C	Calibrated
5	a _{ice}	mm/day/°C	Calibrated
6	k _{snow}	day	Calibrated
7	k _{ice}	day	Calibrated

Input Data

- Precipitation and air temperature: GMET
- Glacier thickness and area: RGI V6.0 and Farinotti et al. (2019)

Calibration

Does the model have internal consistency?

Hydrological models

This model was applied in previous study in lake Titicaca hydrosystem in monthly time step over 1980-2015 (Lima-Quispe et al., 2021)

Model free parameters (7 could move to 9): Rainfall-runoff (7): **Kc:** Crop coefficient Sw: Soil water capacity (mm). **RRF**: Runoff resistance factor. Ks: Root zone conductivity. **f**: Preferred flow direction. **Dw**: Deep water capacity. K₂: Deep conductivity Irrigation (2): Lt: Lower threshold in the soil moisture **Ut:** Upper threshold in the soil moisture

Génie Rural à 4 paramètres en journalier (GR4J)

Rainfall-Runoff (4):

x1: maximum capacity of the production store (mm).
x2: groundwater exchange coefficient (mm).
x3: one day ahead maximum

capacity of the routing store (mm). **x4**: time base of unit hydrograph UH1 (days).

Runs and model performance: SMM-WEAP

Defined ranges for Monte Carlo simulation

Parameters	Value	Unit
Crop coeficient (Kc)	[0.8 - 1.5]	-
Soil Water Capacity (Sw)	[50 - 400]	mm
Runoff Resistante Factor (RRF)	[1 - 20]	-
Root Zone Conductivity (Ks)	[0.5 - 10]	mm/d
Prefered Flow Direction (PFD)	[0.3 - 0.9]	-
Deep Water Capacity (Dw)	[50 - 500]	mm
Deep Conductivity (Dc)	[0.3 - 15]	mm/d
Solid threshold [Ts]	-1	С
Liquid threshold [TI]	3	С

• 7 free parameters for calibration

• 2 fixed parameters of snow accumulation and melting

Runs setup

- Calibration method: random hypercube sampling
- Number of runs: 10 000
- Calibration metrics: NSE, KGE, NSElog (LNS)
- Calibration period: 1985-2015
- Evaluation period: Non
- Precipitation input: GMET
- **PET input:** Pisco (Huerta et al. 2022)

PhD prospects

		2022 2023									2024												2025						
	Activities/outputs	ΟN	D	JF	M	A I	ΙN	J	Α	S (οΝ	I D	J	F	M /	۱ N	1 J	J	A	s c) N	I D	J	FΝ	ΛA	М	l l	I A	A S
	Data collection and processing: PCP, Temp, and Q (Peru)																												
	Data collection and processing: HR, VV																												
	Data collection and processing: PE, SH																												
Hydrological	Data collection and processing: Q (Bolivia)																												
modeling	Review satellite data set																												
	Literature review (uncertainty, reg. of parameters, etc)																												
	Collect irrigation data												_																
	Model implementation and calibration																												
	Analysis of outputs model	\square																						_			_		
	Literature review (downscaling, uncertainty, etc)		_																										
	Download climate model dataset											۰.																	
Future	Assess the performance of the models											-																	
scenarios	Building climate scenarios																												
section	Collection of management strategies																												
	Develop land use scenarios		_														-												
	Runs of future scenarios and analysis	\vdash						_	_				⊢		_						_	_		_	_		_		
Papers	JP1 (Hydrological modeling) - submitted		_																										
	JP2 (Future scenarios) - submitted												⊢											_			_	_	
	PhD questions and literature review																	_											
	Manuscript draft	-	_																										
Thesis	Review of the manuscript		_																										
	Manuscript final version		_																								۰.		
	Defense	\vdash						_		_		_	┢			_	_			_	_	_		_	_		_		
	Scientific and related to the thesis (40 hrs)																												
Courses	Transversal (40 hrs)																												
	Professional (40 hrs)							_		_			⊢		_	_	_				_	_		_	_				
	France																												
Stays	Peru																												
	Bolivia	\vdash						_	_				\bot		_		_	_	_			_		_	_	\square			
Thesis	First thesis committee																												
committee	Second thesis committee																												

References

Huerta, Adrian, Vivien Bonnesoeur, José Cuadros-Adriazola, Leonardo Gutierrez, Boris F. Ochoa-Tocachi, Francisco Román-Dañobeytia, and Waldo Lavado-Casimiro., 2022. PISCOeo_pm, a Reference Evapotranspiration Gridded Database Based on FAO Penman-Monteith in Peru. Scientific Data 9(1):328. doi: 10.1038/s41597-022-01373-8

- Lima-Quispe, Nilo, Marisa Escobar, Albertus J. Wickel, Manon von Kaenel, and David Purkey., 2021. Untangling the Effects of Climate Variability and Irrigation Management on Water Levels in Lakes Titicaca and Poopó. Journal of Hydrology: Regional Studies 37:100927. doi: 10.1016/j.ejrh.2021.100927.
- Perrin, Charles, Claude Michel, and Vazken Andréassian., 2003. Improvement of a Parsimonious Model for Streamflow Simulation. Journal of Hydrology 279(1):275–89. doi: 10.1016/S0022-1694(03)00225-7.
- Ronchail, J., Espinoza, J.C., Labat, D., Call`ede, J., Lavado, W., 2014. Evolucion del nivel del Lago Titicaca durante el siglo XX. Línea Base de Conocimientos Sobre Los Recursos Hidrologicos e Hidrobiologicos en el Sistema TDPS Con Enfoque En La Cuenca Del Lago Titicaca, p. 320. Quito, Ecuador.
- Setegn, S.G., Rayner, D., Melesse, A.M., Dargahi, B., Srinivasan, R., 2011. Impact of climate change on the hydroclimatology of Lake Tana Basin, Ethiopia. Water Resour. Res. 47 https://doi.org/10.1029/2010WR009248.
- Wurtsbaugh, W.A., Miller, C., Null, S.E., DeRose, R.J., Wilcock, P., Hahnenberger, M., Howe, F., Moore, J., 2017. Decline of the world's saline lakes. Nat. Geosci. 10, 816–821. https://doi.org/10.1038/ngeo3052.
- Yates, D., Sieber, J., Purkey, D., Huber-Lee, A., 2005. WEAP21—A demand-, priority-, and preference-driven water planning model: part 1: model characteristics. Water Int. 30, 487–500. 20